• Title/Summary/Keyword: Current design method

Search Result 3,343, Processing Time 0.033 seconds

the Development of Personalization Design framework for building Customized Website - focused on the Application of Design Recommender System (고객맞춤형 웹사이트 구현을 위한 개인화 디자인 프레임웍의 개발 - 디자인 추천 시스템의 활용을 중심으로)

  • 서종환
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.23-34
    • /
    • 2003
  • The need for personalized web site design has been increased these days. Current approach for personalized web site design is easily applied to web site with their cost-effective feature, but is hard to provide a more refined personalized service due to its lack of accumulation of user data. In this study, the design recommender system is investigated as a more advanced method for web site design personalization. We provide an overview of current recommender systems, and then outlined a newly developed design recommender system, which employs collaborative filtering technique to provide tailored recommendation for users.

  • PDF

Design of a 2-Layer HTS Power Transmission Cable Core According to the effect of Winding Direction (연방향 영향을 고려한 2층 고온초전도 전력케이블 코어 설계)

  • 주진홍;김석환;조전욱;배준한;김해종;김해준;성기철;홍정표
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.58-61
    • /
    • 2003
  • A typical HTS power transmission cable has multi-layer conductor structure to increase the current capacity. The current distribution among the conductor tapes is controlled mainly by pitches and winding directions of the layers, because the inductance of the layer is determined by the pitch and the winding direction. However, usually the current is not evenly distributed among the layers. This paper describes a method to make the current distribution more uniform and hence reduce the AC loss. If we choose a good combination we can find the optimal pitches and make an even current distribution. We studied the effect of the winding direction on a 2-layer cable by a statistical way. Calculation results and discussions will be presented.

  • PDF

Simulation-based Parametric Study of the Current Collection System of High Speed Trains (시뮬레이션에 의한 고속전철용 집전시스템 매개변수 연구)

  • 한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.279-285
    • /
    • 2003
  • In an electric traction system in which power is supplied from a catenary via a pantograph, the mechanical design of the catenary and pantograph is clearly of importance in relation to the problem of current collection at high speed. A computer-simulation technique is used to study the effects of changing parameters of pantograph and catenary on the quality of current collection at high speed. The current collection system is evaluated on the basis of the contact-force variations and displacement responses of the pantograph and contact wire. This study shows that current-collection quality is determined primarily by the overhead line parameters rather than by the pantograph. The results can be applied to optimize the design of current-collection systems.

Digital Current Controller with Smith-Predictor for PWM Converters

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 1996
  • From the cost-effective point of view, it is very important to design a current with the highest utilization factor of current capacity of power devices. This can be accomplished by a current controller without overshoot irrespective of the varying bounds of control voltage in PWM converters and the dead time due to the time delay. This paper suggests a novel decoupled controller with Smith-Predictor which has the fast control response without overshoot and steady stats error and also deal with the design method of the controller for PWM converters. The extensive digital simulations done by SIMULINK/MATLAB show that the suggested controller guarantees the full utilization of current capacity of power devices and the decoupled current control behavior.

  • PDF

A Study on the Analysis and Prediction of switch currents in PWM inverters (PWM 인버터에서 스위치 전류의 해석과 그 예측에 관한 연구)

  • Ji, Ho-Chul;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.448-452
    • /
    • 1997
  • Theoretical average current and rms current equations are solved using the analytical method in the 3phase voltage-fed inverter. Experimental switch current equations are established by simulation and compared with theoretical equations. As a result of analysis, average and rms currents of switch devices are represented by a function as power factor and modulation index. Especially, equations of this paper are represented as a function of a single factor(K) equal to the product of the power factor and modulation index. Method that can find current levels of switch devices for inverter design and conduction loss of inverter in a simple and accurate manner is presented. Influences of modulation method on switch current are also studied.

  • PDF

The Reduction Method of Strings Current Unbalancing in LED Lighting Driving System (LED 조명용 구동장치에서 열간 전류의 불평형 감소방법)

  • Park, Chong-Yeun;Song, Jae-Wook;Yoo, Jin-Wan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.26-32
    • /
    • 2013
  • The LED has the proportional characteristic between the flux of light and its current and has caused voltage-current deviation on production process. Thus the unbalancing of each LED strings current occurred by its characteristic deviation. This unbalancing reduce a uniformity of the flux of light. Therefore, we researched to design method the LED driver based on DSP and the balancing transformer for a LED current balancing. These are applied to 50W LED module consist of 4 parallel strings. We analyzed the reduction of LED currents unbalance by experimental result from each method.

Research on Mechanical Shim Application with Compensated Prompt γ Current of Vanadium Detectors

  • Xu, Zhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.141-147
    • /
    • 2017
  • Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt ${\gamma}$ current of self-powered detector is ignored normally due to its weakness compared with the delayed ${\beta}$ current, although it promptly reflects the flux change of the core. Based on the features of the prompt ${\gamma}$ current, a method for configuration of the lead-lag dynamic compensator is proposed. The simulations indicate that the method can improve dynamic response significantly with negligible adverse effects on the steady response. The robustness of the design implies that the method is of great value for engineering applications.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics (CFD분석을 통한 기류식 분쇄기 날개부의 최적설계)

  • Kim, Gun-hoi;Kim, Han-bit
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.

Design of ferromagnetic shims for an HTS NMR magnet using sequential search method

  • Yang, Hongmin;Lee, SangGap;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.39-43
    • /
    • 2021
  • This study deals with the ferromagnetic shims design based on the spherical harmonic coefficient reduction method. The design method using the sequential search method is an intuitive method and has the advantage of quickly reaching the optimal result. The study was conducted for a 400 MHz all-REBCO magnet, which had difficulty in shimming due to the problem of SCF (screening current induced field). The initial field homogeneity of the magnet was measured to be 233.76 ppm at 20 mm DSV (Diameter Spherical Volume). In order to improve the field homogeneity of the magnet, the ferromagnetic shim with a thickness of 1 mil to 11 mil was constructed by a design method in which sequential search algorithm was applied. As a result, the field homogeneity of the magnet could be significantly improved to 0.24 ppm at 20 mm DSV and 0.05 ppm at 10 mm DSV.