• Title/Summary/Keyword: Current collection system

Search Result 443, Processing Time 0.026 seconds

The Effect of Train Motion on Dynamic Characteristics of Current Collection System (고속전철의 주행조건이 집전계의 동특성에 미치는 영향)

  • Kim Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.18-22
    • /
    • 2006
  • The dynamic characteristics of the current collection system are investigated by conducting a test run in which signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. The dynamic characteristics of the current collection system are found to be strongly influenced by the train speed; the fluctuation in the pantograph motion increases in direct proportion to the train speed. There exist two major fequency components in the pantograph motion related to the current collection, a speed-dependent component arising from the train traversing a span of the catenary, and a speed-independent component related to the pantograph resonant frequency. The train acceleration is also found to exert strong influence on the current collection system characteristics. The effect of the train motion is found to be stronger on the speed-dependent frequency component than on the speed-independent one.

Analysis on Installation Condition According to Dynamic Characteristics for Overhead Catenary System (전차선로 동적특성에 따른 설치상태 분석)

  • Park, Young;Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1605-1609
    • /
    • 2016
  • The measurement of current collection performance between pantograph and contact wire of overhead catenary system is intended to prove the safety of operation and the quality of the current collection system. The results of interaction performance of current collection system are required for approving with commercial operation on railway lines. The methods of interaction performance of current collection system are defined on interactional standards such as IEC 62486 and EN 50317. In this paper, the interaction performance is evaluated by the percentage of arcing on Honam high-speed line and the results are used for adjustment of the overhead catenary line structure. The experimental results in Honam high-speed line confirm that the duration of an arc lasting longer 25 ms between pantograph and contact wire was depended on the conditions of overhead contact line after installation.

Simulation-based Parametric Study of the Current Collection System of High Speed Trains (시뮬레이션에 의한 고속전철용 집전시스템 매개변수 연구)

  • 한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.279-285
    • /
    • 2003
  • In an electric traction system in which power is supplied from a catenary via a pantograph, the mechanical design of the catenary and pantograph is clearly of importance in relation to the problem of current collection at high speed. A computer-simulation technique is used to study the effects of changing parameters of pantograph and catenary on the quality of current collection at high speed. The current collection system is evaluated on the basis of the contact-force variations and displacement responses of the pantograph and contact wire. This study shows that current-collection quality is determined primarily by the overhead line parameters rather than by the pantograph. The results can be applied to optimize the design of current-collection systems.

Analysis of Current Collection Performance using Real-time Measurement of Current for Overhead Contact Line on the Track-side (선로변 전차선과 조가선의 전류를 이용한 집전성능 분석 기술)

  • Park, Young;Shin, Seung-Kwon;Lee, Kiwon;Kim, Jaemoon;Kim, Wonha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.573-576
    • /
    • 2013
  • In this paper, analysis method for current collection performance based on real-time current of catenary system is proposed. An innovative method based on track-side of railway system is used for measurement of currents for overhead contact line during the collection with pantograph. The evaluation of a qualitative ratio for current collection performance were conducted using proposed algorithm under various conditions such as laboratory and track-side. To check the validity of our approach, we compared between calculation results from current of contact wire and measurement results from arcing of pantograph using simulator in laboratory conditions. The results show that the behavior of current collection performance were analysis from currents of overhead contact line in AC electric railway system.

The Effect of Train Motion on Current Collection in High-speed Train

  • Kim, Jung-Soo
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The safety performance of the current collection system is evaluated by conducting a test run in which accelerometer and load cell signals are analyzed. It has been found that the current collection performance is strongly influenced by the train speed, with the major frequency components arising from the train traversing the span spacing and the 8.5 Hz component originating from the panhead resonance. The train acceleration is found to have significant influence on the span passing frequency but negligible effect on the resonant response.

A Study on the Effects of Construction Tolerances on the Current Collection Performance for High Speed Catenary System (고속전차선로의 시공 허용오차가 집전성능에 미치는 영향에 관한 연구)

  • Kim, Tae-Hun;Seo, Ki-Bum;Park, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1782-1788
    • /
    • 2015
  • In this paper, analysis of the effects for construction tolerances on the current collection performance of high speed catenary system. The height of the contact wire is the geometrical position of the cantilever directly affects the current collection performance. Contact force when the height of the contact wire exceeds the construction tolerance were analyzed. As a result, the maximum contact force was analyzed to more than 350[N] that are recommended by EN50119. And when the geometrical position of the cantilever to exceeds the construction tolerance, the analysis results of uplift at the mast support points, it becomes 127[mm] that are recommended by UIC 799. If the construction tolerances exceeds the reference value, the current collection performance is deteriorated. Therefore, catenary system require high precision construction. In the future, there is a need for continuing research on the tolerance of catenary system in the actual operating state.

Analysis of Current Collection Performance Testing and Result of 350[km/h] Catenary System (350km/h 전차선로 집전성능 시험 및 결과 분석)

  • Heo, Yong-Seok;Lee, In-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.365-369
    • /
    • 2016
  • The 350[km/h] catenary system was successfully opened in Honam high speed line. This 350[km/h] catenary system is firstly constructed in South Korea. Therefore the current collection performance of this system should be tested and evaluated by the authority. This paper describes the testings by running of HEMU-430X train and the evaluation criteria and result analysis to determine whether the performance of the catenary is good or not as a verification of catenary-pantograph interface. In detail, the contact force by pantograph, arcs by loss of contact and uplift amount of the catenary support were measured and discussed as a category of the current collection performance.

A Study on the Dynamic Simulation of High Speed Current Collection System (고속 집전계의 동적 수치모의해석 프로그램 연구)

  • Hur, S.;Kyung, J.H.;Song, D.H.;Kim, J.S.;Cho, Y.H.
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • In this study, we have developed the static and dynamic simulation program of a high speed current collection system. The catenary wire is modeled to discrete masses connected by massless strings and the pantograph is replaced with 3 d.o.f equivalent models that are composed of masses, springs and dampers. We derived partial differential equations of motion from the equivalent model and developed the simulation program. Then, we calculated the static equilibrium state of the overhead catenary and the dynamic behaviors of the high speed current collection system. The analysis results were compared with the results of GASENDO software developed at RTRI in Japan.

Dynamic Analysis of Current Collection System in High Speed Train (고속전철용 집전시스템의 동적해석)

  • 최연선;최진민;경진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.142-147
    • /
    • 1995
  • Dynamic characteristics of current collection system is one of the major factors which decide the performance of high speed train. To find good design parameters of the current collection system design guide is prepared through the engineering analysis in this study. The analysis starts from the statics of catenary system which results in the sinusoidal variation of stiffness, which is inherently nonlinear Mathieu equation. Simple physical models of rigid trolley wire and Mathieu equation are considered. To simulate the dynamic response of current collection system, numerical integration based on central difference method and modal analysis are presented. The calculated results of central difference method show superior to those of Euler based algorithm.

  • PDF

Measurement and Analysis of Current Collection Signals in Korean High-speed Railway

  • Kim, Jung-Soo
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.1-5
    • /
    • 2006
  • A data acquisition and processing system for measuring the current collection signals of the Korean High-speed Railway is developed. The current collection system is composed of a pantograph and the overhead catenary that supplies electrical power to the train through the pantograph. The system simultaneously measures the signals generated at the interface between the catenary and the pantograph through the accelerometers, load cells and strain gauges placed at various locations. The on-track test data are processed to evaluate the current collection reliability. The fiequency analysis of the signals reveals the presence of several structural vibration modes in the pantograph, as well as the components arising from the periodicity in the structure of the catenary and pantograph at the interface. The feasibility of predicting the contact performance from the measured signals is also demonstrated.