• 제목/요약/키워드: Current Velocity

Search Result 1,427, Processing Time 0.025 seconds

Eddy Current Effects on the High Density Magnetic Recording System (고밀도 자기기록 시스템에서 발생하는 와전류에 의한 자기 기록 필드 영향 분석)

  • Won, Hyuk;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 2006
  • The frequency of the recording current and the rotating speed of the recording media are Increase for the high densities in perpendicular magnetic recording system with high conductive pole tip head and soft magnetic under-layer. In the paper, the frequency Induced eddy current and velocity induced eddy currents are analyzed by non-linear 3-dimensional finite element analysis. It it turned out that the frequency induced eddy current decreases the amplitude of the recording fields, whereas the velocity induced eddy current only distorts the distribution of the recording fields in the recording media.

The Effects of Signal Delay on Scanning Velocity Modulation in CRT

  • Choo, Seong-Hun;Choi, Jong-Hoon;Bae, Min-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1160-1163
    • /
    • 2003
  • The effects of time delay between a video signal and a current signal applied to velocity modulation coil on free-spot movement and beam size were measured and analyzed quantitatively in this study. The result shows that it is the most important to avoid signal mismatching in order to achieve the optimal velocity modulation performance.

  • PDF

Flood Runoff Measurements using Surface Image Velocimetry (표면영상유속계(SIV)를 이용한 홍수유출량 측정)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwon-Kyu;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.581-589
    • /
    • 2013
  • Surface Image Velocimetry(SIV) is an instrument to measure water surface velocity by using image processing techniques. Since SIV is a non-contact type measurement method, it is very effective and useful to measure water surface velocity for steep mountainous streams, such as streams in Jeju island. In the present study, a surface imaging velocimetry system was used to calculate the flow rate for flood event due to a typhoon. At the same time, two types of electromagnetic surface velocimetries (electromagnetic surface current meter and Kalesto) were used to observe flow velocities and compare the accuracies of each instrument. The comparison showed that for velocity distributions root mean square error(RMSE) was 0.33 and R-squared was 0.72. For discharge measurements, root mean square error(RMSE) reached 6.04 and R-squared did 0.92. It means that surface image velocimetry could be used as an alternative method for electromagnetic surface velocimetries in measuring flood discharge.

Measurement of the Drift Velocity for Electron Swarm in a Alkali Metal Using a Induced Current Method (유도 전류법을 이용한 알칼리 금속중에서 전자군의 이동속도 측정)

  • Baek, Yong-Hyeon;Ha, Seong-Cheol;Lee, Bok-Hui;Yu, Gwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.215-218
    • /
    • 1985
  • In this paper, The electron drift velocity was measured from an experimental study of the open end heat pipe system by induced current method as alkali metal vapour was generated in ordinary region of a drift tube. The test condition was alkali metal vapour range from 3.6 to 20.1(Torr), temperature of 667 to 755(K), and E/N of $1{\times}10^{-16}$ to $1{\times}10^{-15}(v.cm^2)$. The results of this study were obtained essentially the same as the extrapolated prediction curve for electron drift velocity in the alkali metal Vapour of J. Lucas et 31 with range of E/N: $1{\times}10^{-17}$ to $1{\times}10^{-16}(v.cm^2)$, and the electron drift velocity was obtained the result an increase in alkali to E/N range from E/N $2.8{\times}10^{-17}$ to $5.6{\times}10^{-16}(v.cm^2)$ (E/N From 2.8 to 50 Td).

  • PDF

Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon;Kim Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

Development of Sheet Metal Forming Apparatus Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 박판성형 장비 개발)

  • Lee, H.M.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • Electromagnetic forming (EMF) method is one of high-velocity forming processes, which uses electromagnetic Lorentz force. Advantages of this forming technique are summarized as improvement of formability, reduction in wrinkling, non-contact forming and applications of various forming process. In this study, the EMF apparatus is developed. It is designed to be stored in 10 capacitors connected in parallel, each with a capacitance of $50{\mu}F$ and maximum working voltage of 5kV. The system has capacitance of $500{\mu}F$ and maximum stored energy of 6.25kJ. And EMF experiments are carried out to verify the feasibility of the EMF apparatus, which has enough forming force from the results of EMF experiment. In addition, peak current carrying a forming coil is predicted from theoretical background, and verified the predicted value compared with experimental value using the current measurement equipment. Consequently, EMF apparatus developed in this study can be applied to various EMF researches for commercialization.

Analysis of the Characteristics of the Tidal Current Power Generation System Using PMSG and Water Tunnel (영구자석 동기발전기와 회류수조를 이용한 조류발전 시스템의 특성 해석)

  • An, Won-Young;Lee, Seok-Hyun;Kim, Gun-Su;Lee, Kang-Hee;Jo, Chul-Hee
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured the output power according to the stream velocity by a water tunnel system and a simulation in MATLAB/Simulink. The water tunnel system consisted of impeller tidal flow transducer and PMSG with rotor in the water. The simulation consisted of PMSG, the tidal current turbine, and back-to-back converter. Also, we simulated the characteristics of output power according to the change of blade length and angular velocity.

Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution Characterized by Rotating Cylinder Electrode

  • Kim, Jun-Hwan;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.595-604
    • /
    • 2000
  • Flow-Accelerated Corrosion Behavior of SA106 Gr.C steel in room temperature alkaline solution simulating the CANDU primary water condition was studied using Rotating Cylinder Electrode. Systems of RCE were set up and electrochemical parameters were applied at various rotating speeds. Corrosion current density decreased up to pH 10.4 then it increased rapidly at higher pH. This is due to the increasing tendency of cathodic and anodic exchange half-cell current. Corrosion potential shifted slightly upward with rotating velocity. Passive film was formed from pH 9.8 by the mechanism of step oxidation and the subsequent precipitation of ferrous species into hydroxyl compound. Above pH 10.4, the film formation process was active and the film became stable. Corrosion current density showed increment in pH 6.98 with the rotating velocity, while it soon saturated from 1000 rpm above pH 9.8. This seems that activation process which represents formation of passive film on the bare metal surface controls the entire corrosion process

  • PDF

Geostrophic Velocities Derived from Satellite Altimetry in the Sea South of Japan

  • Kim, Seung-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.243-253
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation coefficient of 0.55 to 0.74. The accuracy of time-mean velocity ranges from 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously for other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently and thus provides unfavorable environment for the performance of the Gaussian jet model.