• Title/Summary/Keyword: Current Mode Control

Search Result 1,001, Processing Time 0.025 seconds

A Seamless Control Method for Supercapacitor to Compensate Pulsed Load in DC Microgrid (직류 마이크로그리드에서 펄스형 부하 보상용 슈퍼커패시터 무순단 제어법)

  • Dam, Hung D.;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.265-272
    • /
    • 2018
  • This paper proposes a new control method for the supercapacitor (SC) to compensate the pulsed load and to enhance the power quality of the DC microgrid. By coordinating the operating frequency, the SC is controlled to handle the surge current, while the low-frequency current component is dealt with by the remaining sources in the system. The operation mode of the SC unit is automatically changed based on the state of charge and DC bus voltage level. Meanwhile, the mismatch in the power demand is covered by the SC unit by regulating the DC bus voltage level. The effectiveness of the proposed method is verified experimentally by the prototype with two distributed generators and one SC unit.

The Study of SRM on the Single Pulse Switching Control With Maximum Energy Ratio (SRM의 최대 에너지비를 갖는 단일 펄스 스위칭방식에 관한 연구)

  • Park, Seong-Jun;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.165-173
    • /
    • 2002
  • The goal of this paper is optimal switching angle of switched reluctance motor drive system fur maximum energy ratio. A new magnetizing method with a low-frequency increasing the energy conversion ratio that is related to the efficiency of motor is proposed. As the results, it improved the efficiency about 2[%]. And a torque ripple is also sufficiently reduced compared with that of the conventional approach. In order tn start softly regardless of large ripple torque, the profile of phase current is predicted by the ANFIS, and current control mode was adapted when it is operated under the starting speed. Variable implementations en the fields will guarantee the more practical drive system.

Implementation of a Low Power and Reduced EMI Signaling Circuit For a LCD Controller-to-Source Driver Interface

  • Choi, Chul-Ho;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.167-168
    • /
    • 2000
  • We propose a signaling circuit that can reduce power consumption and Electromagnetic Interference (EMI) in a Liquid Crystal Display (LCD) controller-to-source driver interface. The proposed signaling circuit consists of a coder/decoder that can minimize temporal bit transitions in a transmission line and a current-mode driver that can convert voltage swing into a very small amount of current. We have simulated the proposed signaling circuit using the HSPICE and the proposed signaling circuit has been designed in a 0.25 ${\mu}m$ CMOS technology.

  • PDF

A dynamic connection admission control algorithm using variable-sized moving window in ATM networks (가변 크기 Moving Window를 적용한 ATM 망에서의 동적 호 접속 제어 연구)

  • 이수경;송주석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.593-603
    • /
    • 1997
  • Connection admission decision in ATM networks requires decision made in real time using fast algorithm. It is difficult to construct a model of the multiplexed traffic and thus, approximation of the traffic load is necessary. In this paper, we propose a measurement-based dynamic CAC(Connection admission Control) in ATM(Asynchronous Transfer Mode) networks, which observes current traffic by the moving window and set the window size to the value which is computed from the measured cell loss amount. It is based on the measurements of the traffic load over an admission period that is load enough to reflect the current traffic behavior instead of analytic modeling. And, the dynamic reallocation of bandwidth for each class leads to effective bandwidth utilization. The performance of proposed method is analyzed through computer simulation. The performance of proposed method is analyzed by using SIMAN simulation package and FORTRAN language. As can be seen in the simulation result, cell loss performance and bandwidth utilization have been increased.

  • PDF

A Study on the Novel Space Vector PWM Inverter without Dead time (데드 타임 없는 새로운 공간 벡터 전압 변조 인버터에 관한 연구)

  • Seo Il-Soo;Song Eui-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1169-1171
    • /
    • 2004
  • Voltage source inverters are required dead time to prevent the short current in the dc link. In recent years, the dead time effect has been investigated in many literatures. This paper presents on the novel space vector PWM inverter without dead time. The proposed inverter don't need to sense load current and to calculate for dead time compensation. Transformers are inserted each leg in the proposed inverter. The proposed method is analyzed each mode and then the simulation results verify the proposed method.

  • PDF

A Seamless Control Method for Supercapacitor to Compensate Pulse Load Transients in DC Microgrid

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.198-199
    • /
    • 2017
  • This paper proposed a new control method for supercapacitor (SC) to compensate the pulse load transient and enhance the power quality of dc microgrid. By coordinating the operation frequency, the supercapacitor is controlled to handle the surge current component while the low-frequency current component is dealt with by remaining sources in the system. Based on the state of charge and dc bus voltage level, the SC unit operation mode is automatically decided. Meanwhile, the dc bus voltage level indicates the power demand of the whole system; by regulating the dc bus voltage, the mismatch of power demand is covered by SC unit. The effectiveness of proposed method is verified by experiment prototype formed by two distributed generation and one supercapacitor unit.

  • PDF

Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power

  • Thongprasri, Pairote;Kittiratsatcha, Supat
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1527-1536
    • /
    • 2014
  • This paper investigates the optimal values of turn-on and turn-off angles, and ratio of flux linkage at turn-off angle and peak phase current positions of optimal control for accomplishing maximum output power in an 8/6 Switched Reluctance Generator (8/6 SRG). Phase current waveform is analyzed to determine optimal excitation angles (optimal turn-on and turn-off angles) of the SRG for maximum output power which is applied from a nonlinear magnetization curve in terms of control variables (dc bus voltage, shaft speed, and excitation angles). The optimal excitation angles in single pulse mode of operation are proposed via the analytical model. Simulated and experimental results have verified the accuracy of the analytical model.

Switched Mode Control Technique for the Series Resonant Sigle-Phase Rectifier with Unity Power Factor (단위 역률을 갖는 직렬공진형 단상 정류기의 모드 변환 제어기법)

  • Jung, Young-Seok;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.850-852
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. A dynamic model for this AC to DC converter is developed and an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor and the DC output voltage regulation without a current overshoot can be obtained.

  • PDF

Hybrid Peak-Valley Current Band Control for PSFB Converter Without Response Delay (응답지연 없는 PSFB 컨버터 하이브리드 피크-밸리 전류밴드 제어 기법)

  • Ko, Jae Hak;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.23-25
    • /
    • 2019
  • PSFB 컨버터(Phase Shift Full Bridge converter)는 다양한 전원장치에 응용되고 있다. 또한 빠른 응답과 1차 측 전류 피크의 불 평형을 방지하기 위해 PCMC(Peak Current Mode Control)를 적용해야 한다. 하지만 PCMC는 유효 시비율이 0.5 이상 일 때 저주파 발진이 일어나기 때문에 경사 보상 기법을 이용해 발진을 막아야 한다. 일반적으로 경사보상 기울기는 최댓값을 사용하기 때문에 전류 명령이 과 보상되며, 무효시비율 구간을 고려하지 않기 때문에 응답속도가 지연 되는 문제가 있다. 따라서 본 논문에서는 무효 시비율 구간을 고려한 하이브리드 피크-밸리 전류 밴드 제어를 통해 BUCK 컨버터와 동일한 응답 특성을 가지는 PSFB 컨버터 제어 기법을 제안한다. 제안하는 기법은 PSIM 시뮬레이션을 통해 검증되었다.

  • PDF

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.