• Title/Summary/Keyword: Current Limiting

Search Result 746, Processing Time 0.03 seconds

Interruption analysis of the SFCL-combined DC circuit breaker system using current-limiting technology

  • Kim, Jun-Beom;Jeong, In-Sung;Choi, Hye-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.30-34
    • /
    • 2016
  • In this study, a SFCL-combined DC circuit breaker system was proposed by applying the current-limiting technology for DC circuit breaking. The SFCL-combined circuit breaker system consists of a mechanical DC circuit breaker combined with superconductors. To ensure the reliable structure and operation of the SFCL-combined circuit breaker system, a simulation grid was designed using the EMTDC/PSCAD program, and simulation was conducted. The results showed that the SFCL-combined DC circuit breaker system with superconductors limited the maximum fault current by 37%. In addition, the burden on the DC circuit breaker was decreased by 87%.

Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system (배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Analysis on the Limiting Method after Half Cycle of Hybrid Superconducting Fault Current Limiter using Simulation (시뮬레이션을 이용한 하이브리드 초전도 전류제한기의 반주기 후 한류 방식 분석)

  • Ahn, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Hyun, Ok-Bae;Seol, Kyu-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.63-64
    • /
    • 2008
  • The increase of fault current due to large demand has caused the capacity of power machines in power grid to increase. To protect the power system effectively from the large fault current, several superconducting fault current limiters have been proposed. however, in order to apply superconducting fault current limiters into power system, there are many problems such as cost, recovery, AC loss, and cryogenic. In order to solve these problems, hybrid superconducting fault current limiter(HSFCL) was proposed. However, HSFCL also has a problem that is protective coordination in distribution system with HFSCL. In this paper, HSFCL limiting after half cycle modeled and analyzed about protective coordination.

  • PDF

A Study of Measurement of Minimum Ignition Energy for Pine Tree Dust on Electrostatic Discharges (정전기 방전시의 소나무목분의 최소착화에너지 측정에 관한 연구)

  • 이동훈;박한석
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.74-79
    • /
    • 1998
  • To establish measuring method for minimum ignition energy of explosive powders caused by electrostatic discharge, A measuring method(Hartman) using a very small quantity of pine tree testing powder was proposed, and the influence of discharge current limiting resistance connected in series into a capacitive discharge circuit on ignition energies of explosive powders was investigated. As a result the minimum ignition energy was 42.25mJ when discharge current limiting resistance 300 $k\Omega$.

  • PDF

Recovery Characteristic of Flux-Lock Type SFCL (자속구속형 초전도 사고전류제한기의 회복특성)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Hyoung-Min;Cho, Yong-Sun;Song, Jae-Joo;Choi, Myoung-Ho;Hwang, Jong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.188-189
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio and the winding direction of two coils. To apply this type SFCL into power system, the analysis for the recovery characteristics of it together with the current limiting characteristic is needed. In this paper, the experiments of the current limiting and the recovery characteristics of the flux-lock type SFCL with YBCO thin film were performed. The recovery characteristics of the flux-lock type SFCL dependent on the winding direction of two coils were analyzed through the comparison with the resistive type SFCL.

  • PDF

Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

Current Limiting Characteristics of Separated Three-phase Flux-coupling Type SFCL according to Winding Number of Coil 2 and Winding Direction (삼상 분리형 자속커플링 전류제한기의 2차 권선의 턴 수 및 결선 방향에 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.694-697
    • /
    • 2009
  • The separated three-phase flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through winding number of coil 2 and winding direction in the flux-coupling type SFCL. Through the analysis, it was shown that additive polarity condition and lower winding number of coil 2 have advantaged from the point of view of fault current limiting and burned of YBCO coated conductor.

Quench characteristic of flux-lock type HTSC FCL (자속구속형 고온초전도 전류제한기의 퀜치특성)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Hwang, Jong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.146-148
    • /
    • 2006
  • The quench characteristics of flux-lock type high-Tc superconducting fault current limiters(SFCL) was investigated, $YBa_2Cu_3O_{7-x}$(YBCO) thin film was used as the current limiting elements of the flux-lock type SFCL. The quench characteristics of current limiting elements consisting of the flux-lock type SFCL was more improved than that of the resistive type SFCL.

  • PDF

Current Limiting effects of a Flux-Coupling Type SFCL according to applied voltage (자속결합형 초전도 한류기의 인가전압별 전류제한 효과)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Cho, Yong-Sun;Lee, Joo-Hyoung;Jung, Su-Bok;Oh, Kum-Gon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.249-251
    • /
    • 2008
  • We investigated a flux-coupling type superconducting fault current(SFCL) limiter. The SFCL consisted of the primary and secondary coils, which were wound in series each other through an iron core. Superconducting unit was connected with secondary coil in parallel. The flux generated from a coil in normal operation is cancelled out by its structure and the zero resistance of the superconducting unit. In this paper. In order to compare the current limiting effects of the SFCL by applied voltage. When a lied voltage was increased, quench time was shortened Fast quench time is important component under the same fault condition because power burden of the SFCL is reduced by that of the superconducting units. The current limiting behavior of flux-coupling type SFCL was dependent upon the applied voltage.

  • PDF

Simultaneous Quench Characteristic of Resistive Superconducting Fault Current Limiting Modules by using BSCCO Tape

  • Yang Seong-Eun;Ahn Min-Cheol;Park Dong-Keun;Youn Il-Goo;Jang Dae-Hee;Ko Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.43-45
    • /
    • 2006
  • Recently, the resistive Fault Current Limiter (SFCL) made with Coated Conductor (CC) has been researched with an advanced capability in CC. Current limiting elements must be connected in series in order to fabricate the resistive SFCL having large capacity. By the way, unless the applied voltage in the SFCL is distributed to the elements when the fault occurred, those elements will be critically damaged. Thus simultaneous quench of the elements is an important factor to design the resistive SFCL. In this paper, simultaneous quench characteristics of current limiting module by using BSCCO 2223 were researched before manufacturing the resistive SFCL by using CC. At the first fault stage, the elements generated the resistance at the same time. However, the unequal voltage is applied to the each element in process of time. The method is suggested to solve the problem of the unequal distribution. These experimental results will play an important part in developing for the resistive SFCL by using CC.