• 제목/요약/키워드: Current Control Loop

검색결과 644건 처리시간 0.028초

Real-Time HIL Simulation of the Discontinuous Conduction Mode in Voltage Source PWM Power Converters

  • Futo, Andras;Kokenyesi, Tamas;Varjasi, Istvan;Suto, Zoltan;Vajk, Istvan;Balogh, Attila;Balazs, Gergely Gyorgy
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1535-1544
    • /
    • 2017
  • Advances in FPGA technology have enabled fast real-time simulation of power converters, filters and loads. FPGA based HIL (Hardware-In-the-Loop) simulators have revolutionized control hardware and software development for power electronics. Common time step sizes in the order of 100ns are sufficient for simulating switching frequency current and voltage ripples. In order to keep the time step as small as possible, ideal switching function models are often used to simulate the phase legs. This often produces inferior results when simulating the discontinuous conduction mode (DCM) and disabled operational states. Therefore, the corresponding measurement and protection units cannot be tested properly. This paper describes a new solution for this problem utilizing a discrete-time PI controller. The PI controller simulates the proper DC and low frequency AC components of the phase leg voltage during disabled operation. It also retains the advantage of fast real-time execution of switch-based models when an accurate simulation of high frequency junction capacitor oscillations is not necessary.

Application and Evaluation of LAMP-PCR for the Diagnosis of Silkworm Pebrine Disease

  • Jong Woo Park;Pu Reun Kook;Jeong Sun Park;Yeong Hee Cho;Seul Ki Park;Hyeok Gyu Kwon;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Kee Young Kim;Seong-Ryul Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권3호
    • /
    • pp.139-146
    • /
    • 2024
  • For stable silkworm breeding and high-quality sericulture product production, the detection of Pebrine disease in silkworm eggs is critical. Current diagnostic methods can be timeconsuming and complex. This study aimed to develop a simplified and rapid diagnostic method using loop-mediated isothermal amplification (LAMP) technology to detect pebrine infection in silkworm mother moths. Eight primer candidates targeting the ribosomal gene region of microsporidia were designed and evaluated for specificity and detection sensitivity. A simplified nucleic acid extraction method was established, and isothermal amplification was performed using the selected primers. Of these, primers ID30 and ID45 showed no polymerization, while ID5, ID18, and ID76 exhibited nonspecific reactions, making them unsuitable. Primers ID1, ID6, ID45, and ID82 successfully amplified DNA only in the presence of pebrine, with ID82 demonstrating the best reproducibility and sensitivity, detecting as low as 2.5 pg/ul of DNA through electrophoresis and 5 pg/ul via a colorimetric change with phenol red. The entire process, from nucleic acid extraction to detection, was completed within 60 min. The use of the ID82 primer set in LAMP technology offers a promising and efficient approach for the rapid diagnosis of pebrine disease, potentially enhancing quality control in sericulture.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

가동원전에서 공정모델링을 통한 PID 튜닝 시뮬레이션 방법 (A Simulation Method of PID Tuning with Process Modeling in Operating Nuclear Power Plants)

  • 민문기;정창규;이광현;이재기;김희제
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.290-294
    • /
    • 2014
  • PID(Proportional, Integral, Derivative) controller is the most popular process controllers in nuclear power plants. The optimized parameter setting of the process controller contributes to the stable operation and the efficiency of the operating nuclear power plants. PID parameter setting is tuned when new process control systems are installed or current process control systems are changed. When the nuclear plant is shut down, a lot of PID tuning methods such as the Trial and Error method, Ultimate Oscillation method operation, Ziegler-Nichols method, frequency method are used to tune the PID values. But inadequate PID parameter setting can be the cause of the unstable process of the operating nuclear power plant. Therefore the results of PID parameter setting should be simulated, optimized and finally verified. This paper introduces the simulation method of PID tuning to optimize the PID parameter setting and confirms them of the actual PID controller in the operating nuclear power plants. The simulation method provides the accurate process modeling and optimized PID parameter setting of the multi-loop control process in particular.

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Controls on KSTAR Superconducting Poloidal Field (PF) Magnets

  • Hahn, Sang-Hee;Kim, K.H.;Choi, J.H.;Ahn, H.S.;Lee, D.K.;Park, K.R.;Eidietis, N.W.;Leuer, J.A.;Walker, M.L.;Yang, H.L.;Kim, W.C.;Oh, Y.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권4호
    • /
    • pp.23-28
    • /
    • 2008
  • As a part of the plasma control system (PCS) for the first plasma campaign of KSTAR, seven sets of fast feedback control loop for the superconducting poloidal field magnet power supply (PF MPS) have been implemented. A special real-time digital communication interface has been developed for the simultaneous exchanges of the current/voltage data from the 7 sets of 12-thyristor power supplies in a 200 microsecond control cycle. Preliminary power supply tests have been performed before actual cooldown of the device. A $29mH/50m{\Omega}$ solenoid dummy has been fabricated for a series of single power supply tests. Connectivity and response speed of the plasma control system have been verified. By changing hardware cabling, this load was also used to estimate mutual inductance coupling effects of two geometrically adjacent solenoid coils on each power supply. After the cooldown was complete, each pair of the up/down symmetric PF coils has been serially connected and tested as part of the device commissioning process. Bipolar operation and longer pulse attempts have been investigated. The responses of the coils and power supplies corresponding to the plasma magnetic controls in plasma discharges are also analyzed for the future upgrades.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

복권형 하이브리드 스테핑 전동기의 회전차 위치 센서리스 최적 Lead Angle 제어 (Rotor Position Sensorless Control of Optimal Lead Angle in Bifilar-Wound Hybrid Stepping Motor)

  • 이종언;우광준
    • 전자공학회논문지S
    • /
    • 제36S권2호
    • /
    • pp.120-130
    • /
    • 1999
  • 본 연구에서는 복권형 하이브리드 스테핑 전동기의 회전자 위치 함수로 주어지는 순시 상전류식을 유도하여 Laad Angle에 따른 순시 상전류값의 변화를 보이고, 특히 여자 펄스 인가후 ${\pi}/2$ 시점의 수닛 상전류값으로부터 회전자 위치 정보를 얻을 수 있음을 이론식 및 컴퓨터 시뮬레이션에 의해 확인하였다. 이러한 사실으로부터 복권형 하이브리드 스테핑 전동기의 폐루프 운전을 위해 회전자 위치 검출기를 사용하지 않고 전동기의 파라미터가 고려된 최적 Lead Angle이 실현된 여자 펄스를 생성시키는 제어기를 마이크로컨트롤러에 의해 구성하고 실험하였다. 구성된 제어기는 A/D 변환기, 프로그래머블 입.출력 타이머 및 전동기 속도에 대한 최적 Lead Angle 값을 갖는 변환 테이블 등의 기능을 갖는 마이크로컨트롤러와 또한 전동기의 속도와 여자 펄스 인가후 ${\pi}/2$ 시점의 순시 상전류값에 대한 정토오크 발생영역에 해당하는 Lead Angle 값을 갖는 변환 테이블을 위한 ROM 등으로 구성되어 외부 부가회로를 최소화하였으며, 전동기의 파라미터 등의 변화에 따른 제어량의 병환 테이블이 내용과 제어 S/W 에 의존함으로써 유연성을 확보하였다. 이와 같이 구성된 복권형 하이브리드 스테핑 전동기의 회전자 위 센서리스 최적 Lead Angle 시의 순시 상전류 파형과 유사한 파형을 얻음으로써 최적 Lead Angle 이 실현되었음을 확인할 수 있었다.

  • PDF

플라이백 컨버터를 이용한 조명용 LED Driver의 모듈화 연구 (A Study on the Modularization of LED Driver for Illumination Using a Fly-Back Converter)

  • 최진봉;김관우;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제14권6호
    • /
    • pp.504-513
    • /
    • 2009
  • 본 논문에서는 조명용 LED 구동 장치를 위한 새로운 방식의 LED 구동 모듈화 방법을 제안한다. 제안된 LED 구동 회로는 플라이백 컨버터를 이용하여 교류 입력 전원의 핫 접지와 LED 구동부의 콜드 접지를 절연한다. LED 전류 제어를 용이하게 하기위해 플라이백 컨버터를 동특성이 뛰어난 불연속 모드로 동작시키고, KIA2431을 이용하여 귀환 루프 제어를 한 후, 그에 대한 특성을 파악한다. 제안된 LED 구동 모듈은 폭넓은 교류 전원 입력 범위와 PWM 제어 IC를 직접 제어하여 버스트 디밍을 구현하고 넓은 범위의 LED 밝기 조절이 가능하게 하였다. 본 논문에서는 제안된 LED 구동 모듈에 대한 동작 원리를 설명하고 LED 구동 모듈을 실제로 구현 및 적용하여 제안된 구동 모듈의 유용성을 입증하였다. 또한, 소형화와 모듈화 된 LED 구동 모듈을 병렬로 연결한 다 채널 LED 구동 장치를 제안하고 그 타당성을 검증하였다.

차량자세제어 최악상황 개발 및 UCC HILS 시스템 기반 성능 평가 (Worst-case Development and Evaluation for Vehicle Dynamics Controller in UCC HILS)

  • 김진용;정도현;정창현;최형진
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.30-36
    • /
    • 2011
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA Sine with dwell steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes useful worst case based upon the existing worst case scenarios mentioned above and worst case evaluation for vehicle dynamic controller in simulation basis and UCC HILS. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.