• Title/Summary/Keyword: Current Collapse

Search Result 234, Processing Time 0.021 seconds

Core decompression for early-stage avascular necrosis of the humeral head: current concepts and techniques

  • Michael D. Scheidt;Saleh Aiyash;Dane Salazar;Nickolas Garbis
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.191-204
    • /
    • 2023
  • Avascular necrosis (AVN) of the humeral head is a rare, yet detrimental complication. Left untreated, humeral head AVN frequently progresses to subchondral fracturing and articular collapse. Cases of late-stage humeral head AVN commonly require invasive procedures including humeral head resurfacing, hemiarthroplasty, and total shoulder arthroplasty (TSA) to improve clinical outcomes. However, in cases of early-stage AVN, core decompression of the humeral head is a viable and efficacious short-term treatment option for patients with pre-collapse AVN of the humeral head to improve clinical outcomes and prevent disease progression. Several techniques have been described, however, a percutaneous, arthroscopic-assisted technique may allow for accurate staging and concomitant treatment of intraarticular pathology during surgery, although further long-term clinical studies are necessary to assess its overall outcomes compared with standard techniques. Biologic adjunctive treatments, including synthetic bone grafting, autologous mesenchymal stem cell/bone marrow grafts, and bone allografts are viable options for reducing the progression of AVN to further collapse in the short term, although long-term follow-up with sufficient study power is lacking in current clinical studies. Further long-term outcome studies are required to determine the longevity of core decompression as a conservative measure for early-stage AVN of the humeral head.

RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs (AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구)

  • Lee, Jong-Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.29-34
    • /
    • 2004
  • This paper reports the RF dispersion and linearity characteristics of unpassivated AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beam epitaxy (MBE). The devices with a 0.5 ${\mu}{\textrm}{m}$ gate-length exhibited relatively good DC characteristics with a maximum drain current of 730 mA/mm and a peak g$_{m}$ of 156 mS/mm. Highly linear characteristic was observed by relatively flat DC transconductance (g$_{m}$) and good inter-modulation distortion characteristics, which indicates tight channel carrier confinement of the InGaN channel. Little current collapse in pulse I-V and load-pull measurements was observed at elevated temperatures and a relatively high power density of 1.8 W/mm was obtained at 2 GHz. These results indicate that current collapse related with surface states will not be a power limiting factor for the AlGaN/InGaN HEMTs.

An Intelligent System to Prevent Voltage Collapse for A Power system (전력계통의 전압 붕괴 방지를 위한 인텔리젼트 시스템)

  • Kim, Jae-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.472-479
    • /
    • 2001
  • In order to prevent voltage collapse. this paper introduces the idea of the intelligent system and operating polices for a power system, then presents the results of voltage stability studies for that power system. The intelligent system includes a dedicated computer doing calculation and evaluation jobs and several intelligent relays serving as last guards to carry out the pre-set remedies. In the intelligent system, P-V curves are used to determine the operating margin from the current operating point to the maximum operating point, or the nose point. This paper suggests an operating guide for voltage stability of a power system. The effectiveness of location ad amount of load shedding for the different power load models are studied.

  • PDF

Analysis for Current Situation of Slope along National Roads in Korea (국내 국도변의 비탈면 현황 분석 연구)

  • Park, Jaeyoung;Shin, Changgun;Chang, Bumsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.19-25
    • /
    • 2010
  • Inventory survey is process collecting data about cut slope. It's different from inspection. Collected data are being used get at status about cut slope along national roads. And we analyse between current situation and data about collapse slope. It helps finding better method about maintenance of cut slope. We found changes in the situation between data at present and data at 10 years ago. We will research collapse and counterplan by cause.

Progressive collapse analysis of a RC building subjected to blast loads

  • Almusallam, T.H.;Elsanadedy, H.M.;Abbas, H.;Alsayed, S.H.;Al-Salloum, Y.A.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.301-319
    • /
    • 2010
  • The paper seeks to explore some aspects of the current state of knowledge on progressive collapse in the technical literature covering blast loads and structural analysis procedure applicable to reinforced concrete (RC) buildings. The paper describes the progressive collapse analysis of a commercial RC building located in the city of Riyadh and subjected to different blast scenarios. A 3-D finite element model of the structure was created using LS-DYNA, which uses explicit time integration algorithms for solution. Blast loads were treated as dynamic pressure-time history curves applied to the exterior elements. The inherent shortcomings of notional member removal have been taken care of in the present paper by simulating the damage of structural elements through the use of solid elements with the provision of element erosion. Effects of erosion and cratering are studied for different scenarios of the blast.

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Simulation of Pyroclastic Density Current by Lava Dome Collapse at Jeju Island Using TITAN2D (TITAN2D를 이용한 제주도에서 발생 가능한 용암돔 붕괴에 의한 화쇄류 수치모의)

  • Chang, Cheolwoo;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In order to determine the runout range of pyroclastic density currents on Jeju island, lava dome collapse on 8 locations of outer rim of Baekrokdam crater were simulated by TITAN2D numerical simulation program. We set parameters as internal friction angle as $30^{\circ}$ and bed friction angle as $20^{\circ}$ to control velocity of currents occurred by lava dome collapse. Then we set the height and radius of lava dome, initial speed of collapse and simulation times. And we carried out numerical simulations for a total of 96 scenarios. The result shows that the maximum runout distance was 13.4 km in case of lava dome collapse. This study can be used database for manufacturing of hazard map to minimize damages caused by pyroclastic density currents occurred on Jeju island.

Progressive Collapse Resisting Capacity of Braced Frames (가새골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Young-Ho;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.429-437
    • /
    • 2008
  • In this study the progressive collapse potential of braced frames were investigated using the nonlinear static and dynamic analyses. All of nine different brace types were considered along with a special moment-resisting frame for comparison. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted- V type braced frames showed superior ductile behavior during progressive collapse. The nonlinear dynamic analysis results showed that all the braced frame model structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment-resisting frame.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.