• Title/Summary/Keyword: Current Circuit Breaker

Search Result 370, Processing Time 0.025 seconds

Review about test method for the full-insulation verification of circuit breaker rated on 800kV, 50kA (800kV, 50kA 차단기의 전절연 검증을 위한 시험방법 검토)

  • Park, Seung-Jae;Suh, Yoon-Taek;Yoon, Hack-Dong;Kim, Yong-Sik;Kim, Maeng-Hyun;Koh, Heui-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.569-571
    • /
    • 2005
  • In case of dead-tank circuit breaker with the earthed enclosure, the dielectric performance for phase to ground should be verified under the hot-gas condition produced by the current interruption. This test condition is required in breaking test duties with the rated short-circuit current and rated voltage. And, KERI has completed the reinforcement of the synthetic testing facilities and these facilities have the testing capacity which enables the full-pole testing for 800kV circuit breaker by adopting the series voltage injection method. So, this paper introduced the test circuit and procedures about the full-pole and the multi-part testing method which was devised to estimate the full -insulation of phase-to-ground for the multi-pole and dead-tank circuit breaker.

  • PDF

A Study on Estimation of Interrupting capability on Molded Case Circuit Breaker including Current Limiting Unit (2중 한류 구조를 갖는 배선용 차단기의 차단성능 평가 연구)

  • Kim, Yong-Gi;Song, Jung-Chun;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.144-146
    • /
    • 2002
  • The latest development flow of MCCB(Molded Case Circuit Breaker) is largely separated from which are high capability of interrupting compact of size and multi-ability in functions. As follow of development of industrial system. MCCB which are including communication function and having a ultimate interrupting capability is required in electrical system. to attain an effective limitation of the peak let-through current and the let-through energy, the arc has to move rapidly off the contacts and has to increase the arc voltage which mainly effect to interrupt. In this paper. we made high performance circuit breaker which including current limiting unit which is attached to the main which is simulated by CAE tool that are repulsion force and mechanical dynamics after that we tested and finally selected optimized for circuit breaker.

  • PDF

Fault Current Calculation and Coordination by IEC Standards (IEC 표준에 의한 고장전류 계산과 보호협조)

  • Son, Seok-Geum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.6-12
    • /
    • 2014
  • The safety and reliability of the power system short-circuit current, the short-circuit current depends on the failure to obtain the objective is to quickly eliminate the breaking capacity of the circuit-breaker selection of the cable, the insulation of electrical equipment and protective relay an important factor in determining the level correction and protective relay selection scheme to be meaningful. Standards used in the domestic circuit breaker is applied to the production of IEC standard, but the American National Standards (ANSI / IEEE) by NEMA specification of the fault current calculations and the application of the asymmetric coefficient Korea. Therefore, in this paper, the IEC 60909 standard IEC breaker fault current calculation method and the method for selection of system configurations reviewed and protection system for reviewing the configuration of various protective relays appropriate correction and the correction value is main protection, back-up protection the equipment so that the period of protection relay coordination to minimize accidents and accident protection to minimize interruptions proposed for cooperation.

Optimization Design for the Use of Mechanical Switch in Z-source DC Circuit Breaker (Z-source 직류 차단기의 기계식 스위치 적용을 위한 최적화 설계)

  • Lee, Hyeon Seung;Lee, Kun-A
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Circuit breakers are a crucial factor in ensuring the safety of a Direct Current (DC) grid. One type of DC circuit breaker, the Z-source DC circuit breaker (ZCB), uses a thyristor, which is a type of semiconductor switch. In the event of a fault in the circuit, the ZCB isolates the fault by generating a zero crossing current in the thyristor. The thyristor quickly and actively isolates the fault while generating a zero crossing current, but thyristor switch cannot control turn-off and the allowable current is lower than the current of the mechanical switch. Therefore, it is best to use a mechanical switch with a high allowable current capacity that is capable of on/off control. Due to the slow reaction time of mechanical switches, they may not isolate the fault during the zero crossing current time interval created by the existing circuit. In this case, the zero crossing current time can be increased by using the property that hinders the rapid change in the current of the inductor. This paper will explore whether adding system inductance to increase the zero crossing current time interval is a solution to this problem. The simulation of changing inductor and capacitor (LC) of the circuit is repeated to find an optimal change in the zero crossing current time according to the LC change and provides an inductor and capacitor range optimized for a specific load. The inductor and capacitor range are expected to provide optimization information in the form LC values for future applications of ZCB's using a mechanical switch.

Design of Vacuum Circuit Breaker Based on Dynamic Model (동적모델에 기반한 진공 회로차단기의 설계)

  • 권병희;안길영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1418-1421
    • /
    • 2003
  • The Vacuum circuit breaker is a kind of power circuit breaker and protect electric devices from over-current. In this paper we built a dynamic model of VCB driving mechanism using ADAMS. The development of the new circuit breaker with less energy and more compactable mechanism is focused. Through the dynamic model, the concept design of the new circuit breaker with less energy and more compactable mechanism is proposed, and then the detailed design is carried out through the design process based on the dynamic model.

  • PDF

TRV Analysis for AC Filter Circuit Breaker in HVDC System (HVDC시스템에서 AC 필터 차단기의 TRV해석)

  • Kim, Chan-Ki;Kim, Jin-Young;Sin, Jin-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.369-374
    • /
    • 2015
  • The circuit breaker in an electric power system is not operated when the voltage in the circuit breaker is higher than the rated transient recovery voltage (TRV). The TRV of a circuit breaker is characterized by re-ignition of the arc between two poles and determined by the value of connecting impedance. In this study, we simulated the peak value of TRV in the AC filter of the circuit breaker. The suitability of TRV is assessed by capacitive current switching test conditions defined by the international guide IEC62271-100.

Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker (신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구)

  • Song, Won-Pyo;Kweon, Ki-Yeoung;Lee, Jae-Sung;Song, Ki-Dong;Kim, Maeng-Hyun;Ko, Hee-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.

Compact Gas-Insulated Circuit-Breaker adopting opening-time control circuits (개극시간 조정회로를 삽입한 축소형 가스절연 차단기)

  • Kim Jung Bae;Kim Doo Sung;Seo Kyung Bo;Yang Dae Il;Song Won Pyo;Kim Maeng Hyun;Ko Hee Seok
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.485-487
    • /
    • 2004
  • High-voltage gas-insulated circuit-breaker must interrupt short-circuit current successfully when breakdown occurs in electric power system. Among many test-duties, Basic Terminal fault T100a(BTF T100a) is the one of the severest duties because of its high DC component of short-circuit current. In this paper, we developed 245kV 50kA gas circuit breaker using control circuits to reduce DC component while interrupting short-circuit current, then got good performance through high-power tests in Korea Electrotechnology Research Institute(KERI) and KEMA

  • PDF

Evaluation of the Application Scheme of SFCL in Power Systems

  • Kim, Jong-Yul;Lee, Seung-Ryul;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.221-226
    • /
    • 2004
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154kV system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying a 154kV Superconducting Fault Current Limiter (SFCL) to 154kV transmission systems is proceeding with implementation slated for after 2010. In this paper, SFCL is applied to reduce the fault current in power systems according to two different application schemes and their technical and economic impacts are evaluated. The results indicate that both application schemes can regulate the fault current under the rating of circuit breaker, however, applying SFCL to the bus-tie location is much more appropriate from an economic view point.

A Study on A Gas Circuit Breaker Development Using Simplified Synthetic Testing Facility (간이합성시험설비를 이용한 가스차단기 개발에 관한 연구)

  • Chong, Jin-Kyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.902-904
    • /
    • 2007
  • A $SF_6$ gas circuit breakers are widely used for short circuit current interruption in EHV or UHV power system. During a $SF_6$ gas circuit breaker development, Simplified synthetic testing facility is used. This paper shows how simplified synthetic testing facility is used for a SF6 gas circuit breaker development.

  • PDF