• Title/Summary/Keyword: Curing agent

Search Result 428, Processing Time 0.025 seconds

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

Solidification/Stabilization of Dyeing Sludge Treated by Fenton Reagent Using Blast Furnace Slag and Fly Ash

  • Lee, Sookoo;Kim, Sebum
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.453-458
    • /
    • 2001
  • This study was performed to reuse the dyeing wastewater sludge treated by Fenton process through the solidification/stabilization technique. To solidify the dyeing sludge the industrial by-products such as blast furnace slag, fly ash and waste sand with cement were used. The laboratory scale and pilot scale test were conducted at room temperature to make construction brick which has high compressive strength and low leaching of heavy metals. The experimental results showed that blast furnace slag and fly ash could be used instead of cement and the products satisfied the regulation of Korean Standards. The blast furnace slag increased the compressive strength and the optimum ratio of slag/dyeing sludge on dry basis was found 0.4. The solidifying agent of SB series could increase rapidly the compressive strength and the optimum ratio of solidifying agent/sludge on dry basis was 0.26 at which the strength was two times compared with non-added condition. The portion of waste and industrial by-products in matrix was over 80%. From the pilot test the optimum pressure in molding was 100kg/$\textrm{cm}^2$ at which the compressive strength was over 100kg/$\textrm{cm}^2$. And the strength increased continuously to 160kg/$\textrm{cm}^2$ until 120 days curing time due to pozzolanic reaction. When SB-20 as a solidifying agent was used, the unconfined compressive strength of dyeing sludge could be obtained 110kg/$\textrm{cm}^2$ which satisfied the regulation of cement brick in Korea Standard(KS).

  • PDF

Adhesion Performances of Natural Adhesives Made by Rosin (로진을 이용한 천연접착제의 접착물성)

  • Choi, Jae-Hoon;Hwang, Hyeon-Deuk;Moon, Je-Ik;Kim, Hyun-Joong;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • As environmental issues is important thing, our study aims to develop natural adhesives made by rosin instead of synthesis adhesive with the formaldehyde emission. Natural adhesives were formulated to enhance curing speed and adhesion performances with various drying agent contents. Adhesion performances were evaluated with tack values measured by texture analyzer and shear strengths determined by single lap shear test. The adhesion performances of nature adhesives developed in this study and compared with those of overseas natural adhesives made by AURO, BioFa, Livos. Optimum drying agent formulation was Co 0.7 part, Zr 1.0 part, Ca 0.5 part, and Activ8 0.1 part. Shear strength of the adhesives manufactured by the optimum drying agent formulation was $93.2{\pm}19.1N/cm^2$.

Effect of the Various Curing Temperatures on the Finishability of Concrete using Aluminum Form (알루미늄 거푸집을 이용한 콘크리트의 양생온도변화에 따른 표면마감성에 관한 연구)

  • Lee, Dong-Gyu;Kim, Tae-Cheong;Baek, Dae-Hyun;Lee, Seong-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.969-972
    • /
    • 2008
  • This study investigated the effect of the fundamental condition such as release agent, form conditions and types to the surface of concrete with aluminum form on the various temperatures. On the observation with the naked eyes, coated plywood and aluminum form without a scratch showed similar result, and the surface quality of the concrete with aluminum form was gradually decreased corresponding to the increase of the temperature.For the surface roughness, there is no remarkable tendency according to the temperature. However, the difference in accordance with release agent occurred.As void on the surface corresponding to the various temperature, the micro voids ranged $0.1{\sim}1mm$ were increased corresponding to the increasing temperature, so it was confirmed that the chemical reaction wae accelerated. And the voids of the other range also increased. the fundamental condition such as release agent, form conditions and types

  • PDF

Performance of High-Flowable Retaining Wall Material Using Ground Granulated Blast-Furnace Slag and Steel Fiber (고로슬래그미분말 및 강섬유를 적용한 고유동 흙막이 벽체 재료의 성능 평가)

  • Kim, Donggyou;Yu, Kangmin;Lee, Seungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.11
    • /
    • pp.5-11
    • /
    • 2022
  • The objective of this study is to evaluate the mechanical properties of high-flowable retaining wall material (RWM) incorporated with ground granulated blast-furnace slag (SG) and steel fiber (SF) based on a comparison with those of ordinary portland cement (OPC). To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) are added in the fresh RWM. The compressive, split tensile and flexural strength measurements were performed on the hardened RWM specimens. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out at predetermined periods after water curing. It was found that the mechanical properties of slag cement concrete (SGC) RWM mix are better than those ordinary portland cement concrete (OPC) RWM mix. The effect of SF is remarkable to improve the mechanical properties of RWM mixes. It is noted that the usage of SG shows a beneficial effect to resist water penetration as well as long-term strength development of RWM mixes.

Effect of Cement Contents and Combinations of Accelerators on Strength Development of Concrete Cured at 10℃ (10℃ 양생조건에서 단위 시멘트량 변화 및 경화촉진제의 복합사용에 따른 강도발현 성능에 관한 연구)

  • Song, Young-Chan;Lee, Tea-Gyu;Kim, Yong-Ro;Seo, Chi-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.94-99
    • /
    • 2018
  • The purpose of this study is to investigate the effect of combinations of different accelerators mixed on the early age strength development of concrete of 21 to 27MPa in the curing temperature of $10^{\circ}C$ compared with existing early strength agent. The present study was assessed the early strength development of combinations of three different accelerating admixtures with early strength type agent comparing to single accelerating admixture with early strength type agent. As a result of this study, the effect of $CaBr_2+NaSCN+DEA$ combination on strength development showed better than $CaBr_2$ or NaSCN alone with early strength type agent. Therefore, we observed that concrete using $CaBr_2+NaSCN+DEA$ combination with early strength agent was achieved 5MPa 12hours earlier than use of $CaBr_2$ or NaSCN alone.

Breakdown characteristics of EPDM/XLPE laminate (XLPE /EPDM laminate의 절연파괴 특성)

  • Nam, Jin-Ho;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1596-1598
    • /
    • 1999
  • In order to determine what influences the interfacial breakdown between two internal dielectric surfaces. We studied the interfacial breakdown phenomena at several interfacial conditions. With the increase of interfacial pressure, at first breakdown strength in interfaces was increased, and then saturated. Breakdown strength in interface pasted with silicone oil was higher than that with silicone grease. As a function of heat treatment time in a vacuum oven interfacial breakdown strength was increased much in XLPE/EPDM laminates pasted with silicone grease but increased a little in that with silicone oil. As an increase of curing agent in silicone oil and grease, breakdown strength in interfaces was increased and then saturated.

  • PDF

Effect of Silicone-modified Microsilica Content on Electrical and Mechanical Properties of Cycloaliphatic Epoxy/Microsilica System

  • Park, Jae-Jun;Yoon, Chan-Young;Lee, Jae-Young;Cheong, Jong-Hoon;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.155-158
    • /
    • 2016
  • The effect of microsilica content modified with silicone-modified epoxy on electrical and mechanical properties of cycloaliphatic epoxy/microsilica system was investigated. The cycloaliphatic epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was an anhydride. Surface of microsilica was modified with silicone-modified epoxy. Electrical breakdown strength, the most important property for electrical insulation materials was tested. Tensile and flexural tests were also performed using universal testing machine (UTM). The microcomposite with 60 wt% microsilica shows maximum values in electrical breakdown strength.

Accelerating Effect of 2-Chloroethyl Phosphonic Acid Foliar Applications on Leaf Tobacco Maturity (2-Chloroethyl Phosphonic Acid가 잎담배 조열에 미치는 영향)

  • 곽병화
    • Journal of Plant Biology
    • /
    • v.15 no.2
    • /
    • pp.1-6
    • /
    • 1972
  • Cultivar Yeollow Special A, the most leading Korean economic leaf tobacco in Korea, were field-cultivated in four different localities of Korea for the period of two years (1970 and 1971) and sprayed at varied levels of 2-chloroethyl phosphonic acid (CEPA) for foliar application few days after topping. While no striking difference in leaf yield by weight was obtained among the treatments when compared with control, leaf quality as expressed for shipment price in won tended when compared with control, leaf quality as expressed for shipment price in won tended to improve. The treated leaves with 300 to 900 ppm of CEPA (approximately 140 1/acre of 500 ppm) not only showed yellowing and accelerated maturity to pick 4 to 5 days with practicable optimal level earlier than control, but also speeded up to take nearly with practicable optimal level earlier than control, but also speeded up to take nearly last half of the total time required for the five stages of flue-curing. It is therefore considered that CEPA is as effective maturity-accelerating agent and useful as known for other solanaceous plants showing climacteric stage respiration, and discussions were made about physiological actions of ethylene gas released from CEPA at plant tissues sprayed.

  • PDF

Nanofiller as Crosslinker for Halogen-Containing Elastomers

  • Sahoo, N.G.;Kumar, E.Shiva;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.506-510
    • /
    • 2003
  • A Zn ion-coated nanosilica filler has been developed and tested, in chlorosulfonated polyethylene (CSPE) and polychloroprene (CR), as a vulcanizing activator, cum was reinforcing filler. In this study, ZnO was replaced by the Zn ion-coated nanosilica filler with an aim of studying the dual role of this nanofiller in CSPE and CR. In the case of CSPE vulcanizates, the presence of MgO deteriorated the state and rate of cure when the Zn ion-coated nanosilica filler was used, but in the case of CR it improved the state of cure and enhanced the modulus and tensile strength. The Zn ion-coated filler proved to be a better reinforcing-cum-curing agent than was externally added ZnO and NA-22 also proved to be a better curative in the presence of the Zn ion-coated nanosilica filler for both CSPE and CR.