• Title/Summary/Keyword: Curing Pressure

Search Result 215, Processing Time 0.029 seconds

Effect of Crosslinking Agent on Adhesion Properties of UV Curable 2-EHA/AA Pressure Sensitive Adhesive (UV경화형 2-EHA/AA 점착제의 점착특성에 대한 경화제의 영향)

  • Kim, Ho-Gyum;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.281-286
    • /
    • 2015
  • UV-cured acrylic copolymer pressure sensitive adhesive (PSA) having different amounts of crosslinking agents were prepared and adhesion properties were investigated. 0.01 wt% of MMT clay was dispersed in 2-ethylhexyl acrylate (2-EHA)/acrylic acid (AA) monomer mixture containing 0, 0.05, 0.1 and 0.3 wt% 1,6-hexandiol diacrylate (HDDA) for crosslinking. It was investigated that the curing behavior and surface chemistry of PSAs were merely affected by the presence of MMT clays. On the other hand, adhesive properties were influenced by the MMT addition; a cohesive failure was restrained due to improved molecular elasticity even in uncrosslinked acrylic PSAs. However, it was also appeared that combination of 0.3 wt% crosslinking agent and MMT loading might result in the damage of adhesion properties of PSAs possibly due to the lack of chain flexibility. In our studies, it is suggested that the 2-EHA/AA PSAs incorporating 0.01 wt% of MMT and crosslinked with 0.05 wt% of HDDA exhibited the balanced adhesion properties without severe cohesive failure during strip.

Improvement of hot work environment in the curing processes of a tire manufacturing company (타이어 제조공장 가류공정의 온열환경 개선에 관한 연구)

  • Lim, Jung-ho;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Generally, the tire curing process is the process in which the sulfur is added and subsequently the tire is heated to give the tire elasticity. In this process, all kinds of the chemicals in the tire are emitted with a lot of heat. The chemical fume and heat aggravate the work environment. To solve this problem, 92 local exhaust ventilators and 8 gravity ventilators were used, but not satisfactory yet. Preliminary survey showed that the temperatures in the process were very high: 30.3, 32.9 and $37.2^{\circ}C$ at 2, 4 and 6m above the ground level, respectively in the winter (outside temperature was $2^{\circ}C$). It can be imagined that the process is severely hot in the summer time. The higher temperature distribution in the higher space tells us that the hot plume could not be removed with the existing ventilation systems. Therefore, in this study, some alternative ventilation systems were designed. The partitions were used to contain the hot plume to increase the capture efficiency. The gravity ventilators were newly designed to improve the extraction efficiency of hot fume. To satisfy the balance of pressure in the curing process, some supply air system was introduced by renewing the existing air conditioning system. Many alternative solutions were evaluated by using computational fluid dynamics modelling. The best and applicable solution was selected and the existing ventilation system was modified. After implementing the new ventilation system, the hot environment was much improved. The temperature reduction in the curing process was about $6.4^{\circ}C$.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

A Study on Curing Reaction of 1-Chlobutadiene-Butadiene Copolymer by Moisture (1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(I))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.195-203
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of CB-BR was attempted through moisture curing reaction. The curing reaction of CB-BR was determined with an use of 3-aminopropyltriethoxysilane(APS) as a crosslinking agent, also a solution reaction with an active chlorine of CB-BR was elucidated by using a reaction kinetics theory and a study of physical property was made through moisture curing on the compound of 3-aminopropyltriethoxysilane and CB-BR The results of this study obtained are as follows : 1) CB-BR reacted easily with APS in the liquid state and the reaction rate coefficient and activation energy were as follows : 2) Optimum pressure condition of moisture cured elastomer(CB-BR+APS) was 20 minutes at $150^{\circ}C$, and the crosslinked elastomer was close to the theoretical value (q=1) for Flory's equation($\frac{\alpha}{\alpha-1}=q{\nu}RT$)

  • PDF

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

The Preparation and Adhesion Performances of Transparent Acrylic Pressure Sensitive Adhesives Containing Acrylamide Monomer for Optical Applications

  • Baek, Seung-Suk;Jang, Se-Jung;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.181-187
    • /
    • 2016
  • Transparent acrylic pressure sensitive adhesives (PSAs) were successfully prepared by photopolymerization with 2-ethylhexyl acrylate (2-EHA) and 2-hydroxyethyl acrylate (2-HEA) as a default constituent and with isobornyl acrylate (IBOA) and N-(isobutoxymethyl)acrylamide (IBMA) as a variable constituent. The IBMA mole fraction effect in the acrylic PSAs was investigated on adhesion performances and the optical properties including 85/85 test as well as the characteristics (solid content, and molecular weight) of the PSA syrups were also investigated. Regardless increasing the IBMA mole fraction in the acrylic PSAs, the acrylic PSAs exhibited almost the same adhesion performance such as $180^{\circ}$ peel strength (~4.0 kg/25 mm) and probe tack (~0.27 kg). All the acrylic PSA samples also showed high transmittance (more than 91%), low haze (less than 1.0%) and low color-difference (less than 1.0) before and after 85/85 test.

Curing Behaviors of SEMI-IPN Structure UV-curable Pressure Sensitive Adhesive for Dicing Tape (Semi-IPN 구조를 갖는 다이싱 테이프용 자외선 경화형 점착제의 경화거동)

  • Do, Hyun-Sung;Kim, Hyun-Joong;Shim, Chang-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.127-128
    • /
    • 2005
  • UV-curable pressure sensitive adhesives were prepared by blending acrylic copolymer, copolymerized with butyl acrylate (BA), acrylic acid (AA) and vinyl acetate (VAc) by solution polymerization, triethyl amine (TEA) and trimethylolpropane triacrylate (TMPTA). The PSAs were evaluated by peel strength with varying contents of TMPTA and UV dose, and also glass transition temperature($T_g$) of PSAs were measured. When exposed on UV irradiation, the PSAs showed the decreased peel strength and increased $T_g$. And following UV irradiation, the PSAs did not leave any residue on wafer after peel off PSA.

  • PDF

Synthesis and Adhesion Properties of UV Curable Acrylic PSAs for Semiconductor Manufacturing Process (반도체 제조 공정용 UV 경화형 아크릴 점착제의 합성과 점착 특성)

  • Lee, Seon Ho;Lee, Sang Keon;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • UV curable acryl resin, pressure-sensitive adhesives (PSAs), are used in many different parts in the world. In particular, PSAs has been used in the wafer manufacturing process of semiconductor industry. As wafers become much thinner, UV curable PSAs require more proper adhesion performance. In this study, acrylic PSAs containing hydroxyl groups were synthesized using monomers of 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, styrene monomer and 2-hydroxyethyl acrylate. Isocyanate modified UV curable PSAs were then prepared by the adduct reaction that facilitates the UV curing property via controlling the amount of methacryloyloxyehtyl isocyanate. The proper adhesion performance and UV curing behavior of UV curable PSAs with various hydroxyl values were studied, and experimental conditions were then optimized to raise the efficiency of wafer manufacturing process. It was found that in case of using the equivalent ratio of 1 : 1 isocyanate hardener used in the UV curable PSAs, the peel strength before the UV curing process decreased as the amount of hydroxyl groups increased in the PSAs. The peeling adhesive strength was also decreased with increasing UV dose due to high curing characteristics.

Influence of the Type of Curing Agent on Swelling Behavior of Natural Rubber Foam (가교제의 종류가 천연고무 발포체의 팽윤거동에 미치는 효과)

  • Lee, Hwan-Kwang;Chung, Tea-Kyung;Kim, Sung-Chan;Kim, Hyun-Gi;Choi, Kyung-Man;Kim, Young-Min;Han, Dong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1775-1781
    • /
    • 2008
  • The effects of the type of curing agent on the swelling of the natural rubber(NR) sponge applicable to the self-sealing layer of a helicopter fuel tank were investigated. The curing systems employed were peroxide and mixed ones of sulfur and peroxide. The NR compounds were prepared in a kneader and a roll-mill. The compounds were partially cured in a press at high pressure and subsequently cured fully with expansion in another press at atmospheric pressure. The apparent density of the NR sponge was measured and the cell structure was observed with scanning electron microscopy. The swelling experiments were performed at room temperature using toluene, iso-octane, and an aircraft fuel as a solvent. More rapid volume swelling of the NR sponge cured by peroxide was achieved than cured by sulfur and peroxide with similar amount of curing agent added in rubber compounds. The apparent density and cell structure of the sponge were extremely sensitive to the amount of peroxide, which influences again the swelling behavior of the NR sponge. It is important to control properly two reactions of decomposition of foaming agent and crosslinking of NR in the mold to obtain rapid swelling of the NR sponge on contact of the fuel.

The Experimental Study of Inorganic Performanent내s of Fire Resistance Evaluation (무기질계 영구거푸집의 내화성능에 관한 실험적 연구)

  • 김영진;백민수;정근호;김우재;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.495-500
    • /
    • 2002
  • The purpose of this study is to develop and to apply this permanent cement mortar form as one of those system forms to improve existing form's problems. (1) In the fire proof test with combined specimen, the fire proof covering including form section thickness is satisfied with the fire proof criterion. It is considered that form section thickness has no problem (2) The suitable method of normal pressure steam curing for the form's mass production is 4 hours in 65℃ considering production cost, the silica fume admixture is economic.

  • PDF