• Title/Summary/Keyword: Curie temperature ($T_c$)

Search Result 117, Processing Time 0.03 seconds

Dielectric properties of P(VDF/TrFE) copolymers thin films prepared by Casting method (Casting 법으로 제조된 P(VDF/TrFE) 공중합체 박막의 유전 특성)

  • Yoon, J.H.;Chung, M.Y.;Lee, S.W.;Park, S.H.;Kim, J.T.;Kim, B.S.;Lee, D.C.;Lim, E.C.;Choi, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1631-1633
    • /
    • 2000
  • A study was carried out on the effect of VDF mol%, on the phase transition presented by P(VDF/TrFE) copolymer cast from dimethylformamide(DMF) solution with molar ratios 70/30 and 80/20. The results from dielectric spectrum and differential scanning calorimetry(DSC) showed that the phase transitions from ferroelectric to paraelectric phase(Curie transition) were observed The Curie point slightly has shifted to high temperature with increasing in VDF mol%, however, the melting point has shifted to low temperature.

  • PDF

Crystallographic and Magnetic Properties of $NdFe_{10.7}Ti_{1.3}$ ($NdFe_{10.7}Ti_{1.3}$의 결정학적 및 자기적 성질 연구)

  • 이승화;이용종;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.361-366
    • /
    • 1996
  • $NdFe_{10.7}Ti_{1.3}$ has been studied with X-ray diffraction, Mossbauer spectroscopy and vibrating sample magnet-ometer(VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha-Fe$, from X-ray and Mossbauer measurements. The $NdFe_{10.7}Ti_{1.3}$ has the $ThMn_{12}$-type tetragonal struc-ture with $a_{0}=8.607{\AA}\;and\;c_{0}=4.790{\AA}$. The Curie temperature ($T_c$) of the $NdFe_{10.7}Ti_{1.3}$ is 590 K from $M\"{o}ssbauer$ spectroscopy performed at various temperatures ranging from 13 to 800 K. Each spectrum below $T_c$ was fitted with six subspectra of Fe sites in the structure$(8i_{1},\;8i_{2},\;8j_{2},\;8j_{1},\;8f\;and\;{\alpha}-Fe)$. The area fractions of the subspectra at room temperature are 13.8%, 15.4%, 17%, 16.4%, 34.1% and 3.3%, respectively. Magenetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, isomer shift and magnetic moment observed at about 180 K in $NdFe_{10.7}Ti_{1.3}$ are attributed to spin reorientation.

  • PDF

THE SPIN REORIENTATION AND THE MAGNETI ANISOTROPY IN $R_{2}Fe_{17-x}M_{x}C_{y}$ (R=Er, Tm, M=Al, Ga)

  • Ohno, K.;Urakabe, T.;Agata, M.;Saito, T.;Shinagawa, K.;Tsushima, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.437-441
    • /
    • 1995
  • In order to consider the change of the magnetic anisotropy energy by the Al or Ga substitution for Fe, spin reorientation temperature $T_{SR}$ and Curie temperature $T_{c}$ in $R_{2}Fe_{17-x}M_{x}$ (R=Er, Tm, M=Al, Ga) have been studied both experimentally and theoretically. As a result, $T_{SR}$ and $T_{c}$ for $R_{2}Fe_{17-x}M_{x}$ shift toward higher temperature side with x ($0{\leq}x{\leq}2.0$). The ${\Delta}T_{c}$ the difference of the $T_{c}'s$ between $Er_{2}Fe_{17-x}Al_{x}$ and $Tm_{2}Fe_{17-x}Al_{x}$, is always about 10 K independent of Al-content. But in the case of Ga substitution, the ${\Delta}T_{c}$ increases with Ga-content ; especially, the ${\Delta}T_{c}$ for x=2.0 is 43 K. This value of the ${\Delta}T_{c}$ is not explained by only the difference of the de Gennes fator G between $Er^{3+}$ and $Tm^{3+}$, but it is thought that the values of $J_{ErFe}$ and $J_{TmFe}$ themselves are not equal. ($J_{AB}$ : the exchange interaction between A and B.)

  • PDF

A Study on the Magnetic Properties of Amorphous Fe-Co-RE-B (RE=Nd, Sm, Gd, Tb) Alloys (비정질 Fe-Co-Re-B(RE=Nd, Sm, Gd, Tb) 합금의 자기적 성질)

  • 김경섭;유성초;김창식;김종오
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.55-59
    • /
    • 1991
  • The temperature-dependent magnetization curves of amorphous Fe-Co-(Nd, Sm, Gd, Tb)-B alloys were measured using a vibrating sample magnetometer from 77 K up to 900 K. The spin wave stiffness constants and the range of the exchange interaction were calculated from the saturation magnetization values at 0 K. Curie temperatures and the Bloch coefficients estimated from the saturation magnetization curves. The low temperature dependence of magnetization is in good agreement with Bloch relation, $M_{s}(T)=M_{s}(O)(1-BT^{3/2}-CT^{5/2})$. The spin wave stiffness constant and the range of exchange interaction are decreased by substitution of heavy rare earth (Tb, Gd).

  • PDF

Microstructure and PTCR characteristic of high $T_c$ lead-free ((1-x)$BaTiO_3-x(Bi_{1/2}Na_{1/2})TiO_3$ characteristic (High $T_c$ Pb-free (1-x)$BaTiO_3-x(Bi_{1/2}Na_{1/2})TiO_3$ 세라믹의 미세구조와 PTCR 특성)

  • Kim, Chul-Min;Cho, Yong-Soo;Jeong, Young-Hun;Lee, Young-Jin;Lee, Mi-Jae;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.32-32
    • /
    • 2008
  • Microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of $0.9BaTiO_3-0.1(Bi_{0.5}Na_{0.5})TiO_3$ [BaBiNT] ceramics doped with $Nb_2O_5$ were investigated in order to develop the Pb-free high Curie temperature ($T_c$)(>$160^{\circ}C$) PTC thermistor. The BaBiNT ceramics showed a tetragonal perovskite structure, irrespective of the added amount of $Nb_2O_5$. They also have a homogeneous microstructure. The resistivity of BaBiNT ceramics was gradually decreased by doping $Nb_2O_5$, which might be due to $Nb^{+5}$ ions substituting for $Ti^{+4}$ sites. The PTCR characteristics of BaBiNT ceramics appeared when the amount of doped $Nb_2O_5$ exceeded 0.0025mol%. Moreover, the abrupt grain growth was observed for the 0.03mol% $Nb_2O_5$added BaBiNT ceramics. It showed an especially high $T_c$ of approximately $172^{\circ}C$ and good PTCR characteristics of a high $\rho_{max}/\rho_{min}$ ratio ($2.96\times10^3$), a high resistivity temperature factor (11.40/$^{\circ}C$) along with a relatively low resistivity ($3.5\times10^4\Omega{\cdot}cm$).

  • PDF

Synthesis and Magnetic Properties of Nanosized Ce-substituted Yttrium Iron Garnet Powder Prepared by Sol-gel Method (졸-겔법에 의한 Cerium 치환 Nanosize YIG 분말의 합성 및 자기적 특성)

  • 장학진;김광석;윤석영;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1008-1014
    • /
    • 2001
  • Nanosize YIG powders added by Cerium which is exellent element in magneto-optical effect were synthesized by Sol-Gel method using Ethylene Glycol solvent. In 120 to 150 minute reaction time, stable sol solution which showed no change in viscosity, pH, and aging time was obtained. Monolithic YIG was synthesized at 80$0^{\circ}C$ with DTA and XRD measurement and its lattice parameter had a tendency to increase from 12.3921 $\AA$. Increasing annealing temperature from 80$0^{\circ}C$ to 105$0^{\circ}C$, average particle size was in the range of 40 nm to 330 nm. Saturation magnetization (M$_{s}$) value was increased from 18.37 to 21.25 emu/g due to enhancement of YIG crystallity and decreasing of orthoferrite phase. On the other hand, coercivity (H$_{c}$) value increased up to 90$0^{\circ}C$ and then decreased above 90$0^{\circ}C$. With increasing Ce addition, coercivity was almost not changed but saturation magnetization value was maximum at Ce 0.1 mol% and then decreased because of increasing a orthoferrite amount. Also, curie temperature (T$_{c}$) of YIG were not changed with Ce addition.ion.

  • PDF

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds

  • Yen, Pham Duc Huyen;Dung, Nguyen Thi;Thanh, Tran Dang;Yu, Seong-Cho
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1280-1288
    • /
    • 2018
  • In this work, we pointed out that Sr substitution for Ca leads to modify the magnetic and magnetocaloric properties of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds. Analyzing temperature dependence of magnetization, M(T), proves that the Curie temperature ($T_C$) increased with increasing Sr content (x); $T_C$ value is found to be 130-260 K for x = 0.0-0.3, respectively. Using the phenomenological model and M(T,H) data measured at several applied magnetic field, the magnetocaloric effect of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds has been investigated through their temperature and magnetic field dependences of magnetic entropy change ${\Delta}S_m$(T,H) and the change of the specific heat change ${\Delta}C_P$(T,H). Under an applied magnetic field change of 10 kOe, the maximum value of $-{\Delta}S_m$ is found to be about $3J/kg{\cdot}K$, and the maximum and minimum values of ${\Delta}C_P$(T) calculated to be about ${\pm}60J/kg{\cdot}K$ for x = 0.3 sample. Additionally, the critical behaviors of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds around their $T_C$ have been also analyzed. Results suggested a coexistence of the ferromagnetic short- and long-range interactions in samples. Moreover, Sr-doping favors establishing the short-range interactions.

Dielectric Properties and Phase Transformation of Poled <001>-Oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals (분극된 <001> 방위 Pb(Mg1/3Nb2/3)O3-PbTiO3 단결정의 유전 특성 및 상전이)

  • Lee, Eun-Gu;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.342-345
    • /
    • 2012
  • The dielectric properties and phase transformation of poled <001>-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$(PMN-x%PT) single crystals with compositions of x = 20, 30, and 35 mole% are investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric-field-induced monoclinic phase was observed for the initial poled PMN-30PT and PMN-35PT samples by means of high-resolution synchrotron x-ray diffraction. The monoclinic phase appears from $-25^{\circ}C$ to $100^{\circ}C$ and from $-25^{\circ}C$ to $80^{\circ}C$ for the PMN-30PT and PMN-35PT samples, respectively. The dielectric constant (${\varepsilon}$)-temperature (T) characteristics above the Curie temperature were found to be described by the equation$(1/{\varepsilon}-1/{\varepsilon}_m)^{1/n}=(T-T_m)/C$, where ${\varepsilon}_m$ is the maximum dielectric constant and $T_m$ is the temperature giving ${\varepsilon}_m$, and n and C are constants that change with the composition. The value of n was found to be 1.82 and 1.38 for 20PT and 35PT, respectively. The results of mesh scans and the temperature-dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase and a to paraelectric cubic phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that measured in the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary.