• Title/Summary/Keyword: Cured property

Search Result 122, Processing Time 0.028 seconds

Preparation of Transparent Organic-Inorganic Hybrid Hard Coating Films and Physical Properties by the Content of SiO2 or ZrO2 in Their Films (투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성)

  • Seol, Hyun Tae;Na, Ho Seong;Kwon, Dong Joo;Kim, Jung Sup;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Transparent organic-inorganic hybrid hard coating films were prepared by the addition of $SiO_2$ or $ZrO_2$, as an inorganic filler to improve the hardness property, filler was highly dispersed in the acrylic resin. To improve the compatibility in the acrylic resin, $SiO_2$ or $ZrO_2$ is surface-modified using various silanes with variation of the modification time and silane content. Depending on the content and kind of the modified inorganic oxide, transparent modified inorganic sols were formulated in acryl resin. Then, the sols were bar coated and cured on PET films to investigate the optical and mechanical properties. The optimized film, which has a modified $ZrO_2$ content of 4 wt% markedly improved in terms of the hardness, haze, and transparency as compared to neat acrylate resin and acrylate resin containing modified $SiO_2$ content of 8 wt%. Meanwhile, the low transparency and high haze of these films slowly appeared at $SiO_2$ content above 10 wt% and $ZrO_2$ content of 5 wt%, but the hardness values were maintained at 2H and 3H, respectively, in comparison with the HB of neat acrylate resin.

A Study on Curing Reaction of 1-Chlobutadiene-Butadiene Copolymer by Moisture (1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(I))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.195-203
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of CB-BR was attempted through moisture curing reaction. The curing reaction of CB-BR was determined with an use of 3-aminopropyltriethoxysilane(APS) as a crosslinking agent, also a solution reaction with an active chlorine of CB-BR was elucidated by using a reaction kinetics theory and a study of physical property was made through moisture curing on the compound of 3-aminopropyltriethoxysilane and CB-BR The results of this study obtained are as follows : 1) CB-BR reacted easily with APS in the liquid state and the reaction rate coefficient and activation energy were as follows : 2) Optimum pressure condition of moisture cured elastomer(CB-BR+APS) was 20 minutes at $150^{\circ}C$, and the crosslinked elastomer was close to the theoretical value (q=1) for Flory's equation($\frac{\alpha}{\alpha-1}=q{\nu}RT$)

  • PDF

The Effects of Hexamethoxymethylmelamine on the Adhesion of Rubber to Brase-Plated Steel Cord (Hexamethoxymethylmelamine이 고무-황동피복코드간의 접착에 미치는 영향)

  • Kim, Wan-Young;Kim, Youn-Sop;Yug, Gyeong-Chang;Kim, Hyung-Soon;Lee, Jeong-Yong;Choi, Sang-Won
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.422-429
    • /
    • 1992
  • The morphology and adhesion properties of rubber compounds containing resorcinol formaldehyde(RF) resin and hexamethoxymethylmelamine(HMMM) used in adhesion of rubber to brass-plated steel cord was investigated. The resins were spherical particles about $2000{\AA}$ diameter and distributed in rubber compounds homogeneously, and the cured compound with steel cord showed migration of resin to steel cord. Also, modulus was increased with increasing HMMM contents. The loss of adhesion between rubber and steel cord was likely to be at initial stages by thermal aging. Considering the physical properties, suability of adhesion layer and thermal aging property, optimum ratio of RF resin and HMMM was 1 : 0.9.

  • PDF

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam (전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성)

  • Park, Jong-Seok;Lee, Seung-Jun;Lim, Youn-Mook;Jeong, Sung-In;Gwon, Hui-Jeong;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.

A Study of the Effect of Degree of Cure on the Physical Properties of Rubber Compounds (가교정도에 따른 고무복합체의 물리적 특성에 관한 연구)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.281-289
    • /
    • 1998
  • Tensile properties including Young's modulus and tear strength were measured for four different rubber compounds; natural rubber(NR), styrene-butadiene copolymer(SBR), ethylene-propylene diene monomer (EPDM), and brominated isobutylene-p-methyl-styrene copolymer(BIMS) as a function of temperature and degree of cure. To see the effect of over cure, a measurement was made of the tensile strength and swelling behavior of the over-cured rubber compounds. Young's modulus, E, was found to have linear dependency on the degree of cure for all rubber compounds. EPDM and BIMS showed the highest and lowest slopes, respectively. The slope of NR and SBR lay between EPDM and BIMS. Tear strength, Gc, decreased in the order of NR>BIMS>SBR>EPDM. As the cure time was extended the degree of cure of NR and SBR decreased, while that of BIMS increased. EPDM showed little change in the degree of cure.

  • PDF

An Experimental Study on Thermal Property of Porous Concrete Containing Bottom Ash (바텀애시를 활용하는 다공성 콘크리트의 열전도 특성에 관한 실험 연구)

  • Jeong, Seung-Tae;Kim, Bum-Soo;Park, Ji-Hun;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • In this paper, the applicability of bottom ash to insulation concrete was investigated to increase the utilization of bottom ash. Bottom ash was used as the aggregates in porous concrete and extensive experiments were conducted to investigate the characteristics of porous concrete using two types of bottom ash aggregates. The water-binder ratios of 0.25 and 0.35 were chosen and concrete specimens was produced with the compaction of 0.5, 1.5, and 3.0MPa to analyze the material properties at different compaction conditions. After concrete specimens were cured for 28 days at water tanks, unit weight, total void ratio, and thermal conductivity were measured. Based on the measured experimental results, the relationships between the unit weight, total void ratio, and thermal conductivity of porous concrete containing bottom ash was presented.

Fast liquid crystal switching performance on indium zinc oxide films with low curing temperature via ion-beam irradiation (이온빔 조사된 저온 소성 인듐 아연 산화막을 이용한 액정의 고속 스위칭 특성 연구)

  • Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.904-909
    • /
    • 2019
  • Using the ion-beam irradiated indium zinc oxide (IZO) films which was cured at $100^{\circ}C$, uniform LC and homogeneous alignment of liquid crystal (LC) molecules was achieved. The IZO film was deposited on the glass substrate at the curing temperature of $100^{\circ}C$ and irradiated by the ion-beam which is an LC alignment method. To verify the LC alignment characteristics, polarizing optical microscope and the crystal rotation method were used. Additionally, it was confirmed that the LC cell with the IZO films had an enough thermal budget for high-quality LC applications. Field emission scanning electron microscope was conducted as a surface analysis to evaluate the effect of the ion-beam irradiation on the IZO films. Through this, it was revealed that the ion-beam irradiation induced rough surface with anisotropic characteristics. Finally, electro-optical (EO) performances of the twisted-nematic cells with the IZO films were collected and it was confirmed that this cell had better EO performances than the conventional rubbed polyimide. Furthermore, the polar anchoring energy was measured and a suitable value for stable LC device operation was achieved.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete (알칼리 활성화 석탄회(Fly Ash, Bottom Ash) 인공경량골재 및 콘크리트 적용)

  • Jo Byung-Wan;Park Seung-Kook;Kwon Byung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.751-757
    • /
    • 2004
  • Artificial lightweight aggregates and solids were manufactured with coal ash(fly ash, bottom ash). In order to apply alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate to concrete, several experimental studies were performed. Thus, it can be noticed the optimal mix proportion, basic characteristies, mechanical properties and environmental safety of alkali-activated coal ash(fly ash, bottom ash) solid and alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate. Also, the freezing-thawing test property of concrete using the alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate was investigated. As a result, the optimal mixing proportion of coal ash(fly ash, bottom ash) solid to make alkali-activated artificial lightweight aggregates was cement $10\%$, water glass $15\%$, NaOH $10\%$, $MnO_2\;5\%$. Alkali-activated coal ash(fly ash, bottom ash) solid can achieve compressive strength of 36.4 MPa, at 7-days, after the paste was cured at air curing after moist curing during 24 hours in $50^{\circ}C$. Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate that do impregnation to polymer was improved $10\%$ crushing strength $150\%$, and was available to concrete.