• Title/Summary/Keyword: Cure

Search Result 2,374, Processing Time 0.174 seconds

The Change of Degree of Cure and Specific Heat Capacity According to Temperature of Thermoset Resin (열경화성 수지의 온도에 따른 경화도와 비열(Cp) 변화)

  • Shin, Dong-Woo;Hwang, Seong-Soon;Lee, Ho-Sung;Kim, Jin-Won;Choi, Won-Jong
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.99-103
    • /
    • 2015
  • This paper presents the cure kinetics studies on the cure reaction of thermosetting resin. Above all, change in degree of cure and specific heat capacity according to temperature are observed using DSC and MDSC. The results are analyzed by cure kinetics and specific heat capacity model. Glass transition temperature was also measured to apply to the specific heat capacity model. Model parameters were gained from the modeling result. As a result, behavior of specific heat capacity can be calculated mathematically.

Influence of Microstructure and Extender Oil on Cure Characteristics of Solution SBR Compounds

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • Cure characteristics of non-oil-extended solution SBR (S-SBR_NO) and oil-extended solution SBR (S-SBR_ EO) compounds reinforced with silica/carbon black were investigated. Minimum and maximum torques of S-SBR_ EO compounds were much smaller than those of S-SBR_NO ones. Delta torques of S-SBR_NO compounds were greater than those of S-SBR_EO ones, and that of S-SBR_NO compound increased with increase in the 1,2-unit content. Optimum cure time ($t_{90}$) of S-SBR compound decreased with increase in the 1,4-unit content, whereas it increased with increase in the 1,2-unit content. Cure rate index of S-SBR compound increased with increase in the 1,4-unit content, whereas it decreased with increase in the 1,2-unit content. Comparing cure characteristics of S-SBR_NO and S-SBR_EO compounds with the same 1,2-unit content, $t_{90}$s of S-SBR_EO compounds were longer than those of S-SBR_NO ones and cure rate indices of S-SBR_EO compounds were smaller than those of S-SBR_NO ones.

Cure Kinetics of amine-cured tetraglycidyl-4,4'-diaminodiphenylmethane epoxy blends with a new polyetherimide (반응성 열가소성 수지로 개질된 TGDDM/DDS 시스템의 Cure Kinetics)

  • Hwang Seungchul;Lee JungHoon;Kim Donghyon;Kim Woho;Kim Minyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.214-217
    • /
    • 2004
  • The cure kinetics of blends of epoxy(tetraglycidyl-4,4'-diaminodiphenylmethane ; TGDDM)/curing agent(diaminodiphenyl sulfone ; DDS) resin with amine terminated polyetherimide-CTBN-amine terminated polyetherimide triblock copolymer(ABA) were studied using differential scanning calorimetry under isothermal conditions to determine the reaction parameters such as activation energy and reaction constants. By increasing the amount of ABA in the blends, the final cure conversion was decreased. Lower values of the final cure conversions in the epoxy/ABA blends indicated that ABA hinders the cure reaction between the epoxy and curing agents. 1be value of the reaction order, m, for the initial autocatlytic reaction was not affected by blending ABA with epoxy resin, and the value was approximately 1.0. The value of n for the nth order component in the autocatalytic analysis was increased by increasing the amount of ABA in the blends, and the value increased from 2.0-3.4. A diffusion controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/DDS/ABA blends.

  • PDF

Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System (에폭시/폴리옥시프로필렌 디아민계의 경화 반응속도 및 동역학 특성 분석)

  • Huang, Guang-Chun;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2011
  • The cure kinetics of a bisphenol A epoxy resin and polyoxypropylene diamine curing agent system are investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the shift of exothermic peaks obtained at different heating rates is used to obtain activation energy of overall cure reaction based on the methods of Ozawa and Kissinger. Isothermal DSC data at different temperatures are fitted to an autocatalytic Kamal kinetic model. The kinetic model is in a good agreement with the experimental data in the initial stage of cure. A diffusion effect is incorporated to describe the later stage of cure, predicting the cure kinetics over the whole range of curing process. Also, dynamic mechanical analysis is performed to evaluate the storage modulus and average molecular weight between crosslinkages.

Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage (탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구)

  • Choi, Eun-Seong;Kim, Wie-Dae
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.404-411
    • /
    • 2018
  • As the autoclave process progresses in a given cure cycle, residual stress in the composite product is induced by cure shrinkage of the resin. As a result, It generates the thermal deformation such as spring-in and warpage, and the inaccuracy of the final product increases. It is important to predict thermal deformation in aerospace parts which require precise fabrication. The research has been done on predicting and grasping curing process of composite material. In this study, the cure mechanism of composite materials according to the process is predicted through finite element analysis, and the effect of cure shrinkage on thermal deformation generated by the process is analyzed.

THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION (중합조건에 따른 dual cured resin cement의 열분석적 연구)

  • Lee, In-Bog;Chung, Kwan-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Effect of curing modes on micro-hardness of dual-cure resin cements (중합방법이 이중중합 레진시멘트의 미세경도에 미치는 영향)

  • Lee, Ki-Deok;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate curing degree of three dual-cure resin cements with the elapsed time in self-cure and dual-cure mode by means of the repeated measure of micro-hardness. Materials and Methods: Two dual-cure self-adhesive resin cements studied were Maxcem Elite (Kerr), Rely-X Unicem (3M ESPE) and one conventional dual-cure resin cement was Rely-X ARC resin cement (3M ESPE). Twenty specimens for each cements were made in Teflon mould and divided equally by self-cure and dual-cure mode and left in dark, $36^{\circ}C$, 100% relative humidity conditional-micro-hardness was measured at 10 min, 30 min, 1 hr, 3 hr, 6 hr, 12 hr and 24 hr after baseline. The results of micro-hardness value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results: The micro-hardness values were increased with time in every test groups. Dual-cure mode obtained higher micro-hardness value than self-cure mode except after one hour of Maxcem. Self-cured Rely-X Unicem showed lowest value and dual-cured Rely-X Unicem showed highest value in every measuring time. Conclusions: Sufficient light curing to dual-cure resin cements should provided for achieve maximum curing.

Low Temperature Cure Film Adhesive

  • Liang, Bin;Zhao, Shenglong
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • A novel carboxyl terminated butadiene-acrylonitrile (CTBN) modified, low temperature cure epoxy film adhesive was developed in this paper. It can be cured at as low as $75^{\circ}C$ for 4 hours with a pressure of 0.1MPa. After post cure at $120^{\circ}C$ for 2 hours, the bonding strengths of Phosphoric Acid Anodizing(PAA) surface treated aluminum adherend were similar to those of structural film adhesives curing at $120^{\circ}C$. It is suitable to bond both metal/composite laminate-to-laminate and laminate to honeycomb structure.

  • PDF

Assessing Cure Rates via Piecewise Gompertz model with Covariates

  • Chung, Dae-Hyun;Won, Dong-Yu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.445-455
    • /
    • 1999
  • We modify the Gompertz regression model for estimation of cure rates from pediatric clinical trials by assuming different hazard rates on the different periods. A treatment period may be divided by the stages of treatments under the different treatment arms. The piecewise Gompertz models provide an efficient method for estimation of the cure rates and a method for testing the difference of the treatment effects in the given interval.

  • PDF

Cure Monitoring of Composite Materials Using Dielectrometry (유전기법을 이용한 복합재료의 경화 모니터링)

  • 권재욱;김진국;김학성;이대길;최진경
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.42-45
    • /
    • 2000
  • The properties of thermosetting resins are dependent on the degree of cure and consolidation quality. Since the consolidation process of thermosetting resin matrix fiber composites is much dependent on the viscosity of resin in the composites, in this study, the dissipation factor which is a function of viscosity was measured by the newly developed Lacomtech dielectrometry apparatus and sensors. Using the measured dissipation factors, the relationship between the dissipation factor and degree of cure with respect to environmental temperature was investigated.

  • PDF