International Journal of Reliability and Applications
/
v.14
no.2
/
pp.107-114
/
2013
Modelling of failures is an important element of reliability modelling. Empirical modelling approach suitable for complex item is explored in this paper. First step of the empirical modelling approach is to plot hazard function, density function, Weibull probability plot as well as cumulative intensity function to see which model fits best for the given data. Next step of the empirical modelling approach is select appropriate model for the data and fit the parametric model accordingly and estimate the parameters.
Communications for Statistical Applications and Methods
/
v.21
no.2
/
pp.125-134
/
2014
Kullback-Leibler (KL) information is a measure of discrepancy between two probability density functions. However, several nonparametric density function estimators have been considered in estimating KL information because KL information is not well-defined on the empirical distribution function. In this paper, we consider the KL information of the equilibrium distribution function, which is well defined on the empirical distribution function (EDF), and propose an EDF-based goodness of fit test statistic. We evaluate the performance of the proposed test statistic for an exponential distribution with Monte Carlo simulation. We also extend the discussion to the censored case.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.32
no.3
/
pp.147-160
/
2020
A stochastic probabilistic model for harbor structures such as rubble-mound breakwater has been formulated by using the generalized Wiener process considering the nonlinearity of damage drift and its nonlinear uncertainty, by which the damage path with real-time can be tracked, the residual useful lifetime at some age can also be analyzed properly. The formulated stochastic model can easily calculate the probability of failure with the passage of time through the probability density function of cumulative damage. In particular, the probability density functions of residual useful lifetime of the existing harbor structures can be derived, which can take into account the current age, its present damage state and the future damage process to be occurred. By using the maximum likelihood method and the least square method together, the involved parameters in the stochastic model can be estimated. In the calibration of the stochastic model presented in this paper, the present results are very well similar with the results of MCS about tracking of the damage paths as well as evaluating of the density functions of the cumulative damage and the residual useful lifetime. MTTF and MRL are also evaluated exactly. Meanwhile, the stochastic probabilistic model has been applied to the rubble-mound breakwater. The related parameters can be estimated by using the experimental data of the cumulative damages of armor units measured as a function of time. The theoretical results about the probability density function of cumulative damage and the probability of failure are very well agreed with MCS results such that the density functions of the cumulative damage tend to move to rightward and the amounts of its uncertainty are increased as the elapsed time goes on. Thus, the probabilities of failure with the elapsed time are also increased sharply. Finally, the behaviors of residual useful lifetime have been investigated with the elapsed age. It is concluded for rubble-mound breakwaters that the probability density functions of residual useful lifetime tends to have a longer tail in the right side rather than the left side because of the gradual increases of cumulative damage of armor units. Therefore, its MRLs are sharply decreased after some age. In this paper, the special attentions are paid to the relationship of MTTF and MRL and the elapsed age of the existing structure. In spite of that the sum of the elapsed age and MRL must be equal to MTTF deterministically, the large difference has been shown as the elapsed age is increased which is due to the uncertainty of cumulative damage to be occurred in the future.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.48
no.8
/
pp.1-6
/
2011
In this paper, another analytical approach for dual-hop amplify-and-forward(AF) relay systems is proposed over Rayleigh fading channels. Previous approaches derived the moment generating function(MGF) by using the cumulative distribution function(CDF) or probability density function(PDF) of the received signal-to-noise ratio(SNR) for source-relay-destination(S-R-D) link. Then, the average symbol error rate is expressed based on derived MGFs. In this paper, another new approach is proposed. It means that the MGF is directly derived by utilizing PDFs of both source-relay(S-R) and relay-destination(R-D) links. Additionary, the newly derived MGF is compared and analyzed with previous ones. Furthermore, simulation results are presented to validate the accuracy of proposed analytical expression. Based on this, it is confirmed that the proposed analytical approach can be a another solution for dual-hop AF relay systems.
This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.
Let {$X_n$, $n{\geq}1$} be a sequence of i.i.d. random variables with absolutely continuous cumulative distribution function(cdf) F(x) and the corresponding probability density function(pdf) f(x). In this paper, we give characterizations of Pareto and Weibull distribution by considering conditional expectations of record values.
International Journal of Aeronautical and Space Sciences
/
v.7
no.2
/
pp.33-41
/
2006
Theoretical-numerical approach of combustion instability in a specific rocket engine is conducted with parametric response functions. Fluctuating instantaneous burning rate is assumed to be functionally coupled with acoustic pressures and have a finite or time-varying amplitudes and phase lags. Only when the amplitudes and phases of combustion response function are sufficiently large and small respectively, the triggered unstable waves are amplified.
Let {$X_{n},\;n\;\geq\;1$} be a sequence of independent and identically distributed random variables with absolutely continuous cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x). Suppose $X_{U(m)},\;m = 1,\;2,\;{\cdots}$ be the upper record values of {$X_{n},\;n\;\geq\;1$}. It is shown that the linearity of the conditional expectation of $X_{U(n+2)}$ given $X_{U(n)}$ characterizes the lomax, exponential and pareto distributions.
This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.
Journal of the Society of Naval Architects of Korea
/
v.56
no.5
/
pp.383-388
/
2019
It is essential to reduce the Infra-red signature for increasing ship's survivability in ship design stage. However the ship's IR signature is quite sensitive to the maritime and atmosphere. Therefore, it is very important to select the marine meteorological data to be applied to the signature analysis. In this study, we selected the three meteorological sample sets from the population of the Korea Meteorological Administration's marine environment data in 2017. These samples were selected through the two-dimensional stratified sampling method, taking into account the geopolitical threats of the Korean peninsula and the effective area of the buoy. These sample sets were applied to three naval ships classified by their tonnage, and then the IR signature analysis was performed to derive the Contrast Radiant Intensity (CRI) values. Based on the CRI values, the validity of each sample set was determined by comparing Cumulative Distribution Function (CDF), and Probability Density Function (PDF). Also, we checked the degree of scattering in each sample set and determined the efficiency of analysis time and cost according to marine meteorological sample sets to confirm the possibility of a probabilistic method. Through this process, we selected the standard for optimization of marine meteorological sample for ship IR signature analysis. Based on this optimization sample, by applying probabilistic method to the management of IR signature for naval ships, the robust design is possible.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.