• Title/Summary/Keyword: Cumulative Distribution Function fitting

Search Result 4, Processing Time 0.018 seconds

An Image Enhancement using CDF fitting (CDF 부합에 의한 영상 개선)

  • Kang Chang-Ok;Hwang Jae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.653-656
    • /
    • 2006
  • 본 논문은 Cumulative Distribution Function(CDF) 부합에 의한 영상 개선 방법에 대해서 제안하였다. 제안한 방법은 원본 영상의 히스토그램 분포도를 조사하여 히스토그램 그래프상의 특정 색도값들을 선정, 이 점들을 보간법을 이용하여 히스토그램을 재 작성한다. 이를 이용하여 원본 CDF 그래프를 크게 벋어나지 않고, 즉 밝기 정보가 크게 훼손 되지 않은 상태로 색도 값을 재 배치 함으로써 히스토그램 평활화와 스트레칭 효과를 모두 만족하는 영상 향상의 결과를 얻을 수 있다.

  • PDF

Lane Detection Based on a Cumulative Distribution function of Edge Direction (에지 방향의 누적분포함수에 기반한 차선인식)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2814-2818
    • /
    • 2000
  • This paper describes an image processing algorithm capable of recognizing the road lane using a CDF (Cumulative Distribution Function). which is designed for the model function of the road lane. The CDF has distinctive peak points at the vicinity of the lane direction because of the directional and positional continuities of the lane. We construct a scatter diagram by collecting the edge pixels with the direction corresponding to the peak point of the CDF and carry out the principal axis-based line fitting for the scatter diagram to obtain the lane information. As noises play the role of making a lot of similar features to the lane appear and disappear in the image we introduce a recursive estimator of the function to reduce the noise effect and a scene understanding index (SUI) formulated by statistical parameters of the CDF to prevent a false alarm or miss detection. The proposed algorithm has been implemented in a real time on the video data obtained from a test vehicle driven in a typical highway.

  • PDF

Road-Lane Detection Based on a Cumulative Distribution Function of Edge Direction

  • Yi, Un-Kun;Lee, Joon-Woong;Baek, Kwang-Ryul
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF(cumulative distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent false alarms or miss detection a scene understanding index (DUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

  • PDF

A Study on a Statistical Modeling of 3-Dimensional MPEG Data and Smoothing Method by a Periodic Mean Value (3차원 동영상 데이터의 통계적 모델링과 주기적 평균값에 의한 Smoothing 방법에 관한 연구)

  • Kim, Duck-Sung;Kim, Tae-Hyung;Rhee, Byung-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.87-95
    • /
    • 1999
  • We propose a simulation model of 3-dimensional MPEG data over Asynchronous transfer Mode(ATM) networks. The model is based on a slice level and is named to Projected Vector Autoregressive(PVAR) model. The PVAR model is modeled using the Autoregressive(AR) model in order to meet the autocorrelation condition and fit the histogram, and maps real data by a projection function. For the projection function, we use the Cumulative Distribution Probability Function (CDPF), and the procedure is performed at each slice level. Our proposed model shows good performance in meeting the autocorrelation condition and fitting the histogram, and is found important in analyzing the performance of networks. In addiotion, we apply a smoothing method by which a periodic mean value. In general. the Quality of Service(QoS) depends on the Cell Loss Rate(CLR), which is related to the cell loss and a maximum delay in a buffer. Hence the proposed smoothing method can be used to improve the QoS.

  • PDF