• Title/Summary/Keyword: Cumulative Damage Evaluation Method

Search Result 26, Processing Time 0.03 seconds

Vibration Analysis and Durability Evaluation of a Sign Frame on a Bridge (교량부속구조물에 대한 진동해석과 피로내구성평가)

  • Lee, Sang-Hun;Endo, Takao;Ishikawa, Masami;Han, Yeon-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.317-320
    • /
    • 2008
  • Between traffic-induced vibration of a bridge and fatigue damage of its attached structures are very closely related. But any evaluation and design method considering the fatigue damage is not established yet. As an experimental method of evaluation of the fatigue durability, a method based on cumulative damage using a stress range histogram has been often used. However, to use the method, the fatigue durability of unmeasured points could not be evaluated. Then, in this paper, dynamic analysis of a sign frame on a bridge is carried out based on the vibration data of the bridge. And model optimization was performed for good agreement between measured responses and computed responses. As a result, we could get stress range histograms and calculate fatigue durability of unmeasured points.

  • PDF

Strain-Based Structural Integrity Evaluation Methods for Nuclear Power Plant Piping under Beyond Design Basis Earthquake (설계기준초과지진 하의 원전 배관 구조건전성 평가를 위한 변형률 기반 방법)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Ryu, Ho Wan;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.66-70
    • /
    • 2016
  • Following the 2011 Fukushima Nuclear Power Plant accident, the IAEA has issued a revised version of the Nuclear Safety Standard for beyond design basis earthquake to consider the core meltdown accident. In Korea, relevant laws and regulations were also revised to consider beyond design basis earthquake to nuclear components. In this paper, CAV, an seismic damage factor that determines the restart of nuclear power plant after operating breakdown earthquake, is proposed for extension to the beyond design basis earthquake. For pipings not satisfying the beyond design basis earthquake condition, several evaluation methods are suggested, such as strain-based evaluation methods, simple nonlinear analysis method and cumulative damage evaluation method.

The fatigue analysis using cumulative damage rule (Miner's rule) for the welding areas of carbody structure (누적손상법(Miner's rule)을 이용한 철도차량 차체 용접부의 피로평가)

  • Kim, Kwang-Woo;Park, Geun-Soo;Park, Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.30-34
    • /
    • 2007
  • Structural integrity of railway vehicles should last for a long period against various and continuous fatigue loadings, and the carbody structures of railway vehicle are manufactured by applying multiform welding types for each material. Since the most of cracks are occurred and proceeded at the vicinity of welding area during the lifetime of carbody structure, the fatigue strength evaluation for welding area of carbody structure should have been carried out. Rotem Company has evaluated lifetime and fatigue strength of carbody structure according to the fatigue analysis based on the international standard and/or inner-official regulation. This study introduces the fatigue analysis method that we have evaluated and calculated the damages for the welding areas of carbody structure under various fatigue loading conditions using cumulative fatigue damage rule(Miner's rule) to verify whether the cumulative damage does exceed unity. This study contains the fatigue test of specimens to derive stress-life relations(S-N curve), sub-modeling analysis and the calculation of cumulative damages under fatigue loading. The fatigue analysis verifies the welding area shall be capable of withstanding under fatigue loading, identifies how critical area shall be selected and presents the principles to be used for design verification.

  • PDF

Strain-based Damage Evaluation of Specimens under Large Seismic Loads (대형 지진하중에 대한 시편의 변형률기반 손상평가)

  • Kweon, Hyeong Do;Heo, Eun Ju;Lee, Jong Min;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • In this paper, specimen tests with simulated large seismic conditions have been carried out to investigate damage characteristics such as structural deformation and crack initiation under seismic loading. The mechanical behavior of the specimens is predicted by numerical simulations and the strain-based damage evaluations are performed. Finite element analyses of the specimens under the simulated seismic loading at room and operating temperatures were carried out for low alloy steel and stainless steel materials. Peak strain amplitude, cumulative fatigue damage and cumulative strain limit damage are calculated considering the nature of cyclic loading. In all cases, the allowable damage criteria are exceeded at the time of observing cracks visually in the tests. Therefore, it is confirmed that the material behavior due to the large seismic loads can be predicted by the numerical method and the structural damage of the materials can be evaluated conservatively based on the strain criteria.

A Study on the Evaluation Method of Fatigue Strength of Membrane Type LNG Tank(I) (멤브레인 방식 LNG탱크의 피로강도 평가법에 관한 연구 (I))

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • The membrane type LNG tank is non self-supporting tank which consists of both primary and secondary membrane supported through the insulation boxes by the adjacent hull struc¬ture. Although the membranes are not structural member. They are subject to periodical cyclic loads due to the thermal expansion and other expansions or contraction of membrane. At the design stage of the tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds is necessary in order to assist the designer and the inpector. In this study the evaluation method of fatigue strength of membrane type LNG tank is pre¬sented with FEM analysis and fatigue test of lap welds and it contains the following:1) The fatigue tests and preparation of design S - N curve for lap welds 2) FEM analysis of test specimens 3) Estimation of cumulative damage factor of lap welds 4) Guideline for inspection of lap welds of membrane type LNG tank As the results of analytical and experimental approaches in this study, the evaluation method of fatigue strengths of membrane type LNG tank is proposed, which is expected to be useful for design and inspection of membrane type LNG tank.

  • PDF

A Study on the Evaluation of Linear Cumulative Damage Factor of Membrane Type LNG Tank by use of Probability Density Function (확률밀도함수를 이용한 멤브레인방식 LNG탱크의 선형누적손상도 평가에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.993-999
    • /
    • 2004
  • The estimation of fatigue life at the design stage of membrane type LNG tank is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the tank. In this study, the practical procedure of fatigue life prediction by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function has been shown with the corner region of Gaz Transport Membrane type LNG tank being used as an example. In particular the parameters of Weibull distribution that determine the stress spectrum are discussed. The main results obtained from this study are as follows: 1. The recommended value for the shape parameter of Weibull distribution for the LNG tank is 1.1 in case of using the direct calculation method proposed in this study. 2. The calculated fatigue life is influenced by the shape parameter of Weibull distribution and stress block. The safe fatigue design can be achieved by using higher value of shape parameter and the stress blocks divided into more stress blocks.

Development of energy-based excess pore pressure generation model using damage potential (손상잠재력을 이용한 에너지-과잉간극수압 발현 모델 개발)

  • Park, Keun-Bo;Kim, Soo-Il;Kim, Ki-Poong;Lee, Chae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.575-586
    • /
    • 2008
  • The main objective of this paper is to develop an improved model for the analysis of liquefaction potential and to predict excess pore pressure (EPP) using the proposed model that can simulate behavior of saturated sand under earthquake loading conditions. The damage concept is adopted for the development of the proposed model. For the development of the model, a general formulation based on experimental results and damage potential using cumulative absolute velocity (CAV) is proposed for a more realistic description of dynamic responses of saturated sand. Undrained dynamic triaxial tests are conducted using earthquake loading conditions. Based on test results, the NCER-NCW function in terms of $w_d$ and CAV is developed. Procedure for the evaluation of EPP and determination of model parameters for the proposed model is presented as well. For the determination of initial liquefaction, the minimum curvature method using the NCS-NCW curve is proposed. It is observed that predicted initial liquefaction using the proposed method agrees well with measured initial liquefaction. From results of additional undrained dynamic triaxial tests, it is seen that predicted EPP generation using the proposed model agrees well with measured results for earthquake loading cases.

  • PDF

A Study on the Fatigue Strength of the Welds of Membrane Type LNG Tank (멤브레인 방식 LNG탱크 용접부의 피로강도에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 1997
  • In this study an evaluation method of fatigue strength of membrane type LNG tank is presented with FEM analysis and experimental approach of seam and raised edge welds. The study contains the following : l)FEM analysis of test specimens 2)Fatigue tests of seam and raised edge welds 3)Estimation of cumulative damage factor of the welds on the basis of safe life design concept complying with the rules of classification society 4)Review of the effect of mean stress on the fatigue strength 5)Modelling of fatigue life of the welds which is changeable by weld heights With the results obtained in this study, a model ${\Delta}{\delta}/h^2=0.13553\;{N_{f}}^{-0.3151}$ for seam and raised edge welds having a given weld height is proposed to be useful for designers and inspectors.

  • PDF

Evaluation of Microscopic Damage to TIG Welded Carbon Steel using Acoustic Emission and Ultrasonic Test (음향방출과 초음파를 이용한 TIG 용접탄소강의 미시적 손상평가)

  • Lee, Joon-Hyun;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.5-10
    • /
    • 2012
  • In this study, carbon steel (A53) is used as the material for the pipes in a marine plant and ship industry. Welds are necessary to join the carbon steel, and the effect of this welding on the properties of the carbon steel has been studied by many researchers. In this study, the dynamic behavior of welded carbon steel was studied using an acoustic emission (AE) technique, which is a nondestructive test. There are numerous AE parameters that can be used to analyze the damage behavior of carbon steel by external loading. The AE parameters of energy, cumulative count, amplitude, and AE event were used, and each parameter was differentiated according to the degree of damage to the carbon steel. The energy showed a high level at the elastic range of the load curve, while the amplitude had the highest value at the hardening region. The cumulative count showed a growth tendency similar to the loading curve. In addition, an ultrasonic technique and hardness test were applied to evaluate the mechanical properties according to the base zone, HAZ region, and weld zone of the weld specimen. The velocity and attenuation ratio showed little change between zones, and an evaluation of the ultrasonic waves on each zone of the specimen was found to be a useful method to clarify the mechanical properties of the carbon steel.

A Study on Fatigue Crack Propagation Analysis and Fatigue Strength Evaluation for Bulk Carrier (살물선의 피로균열 전파해석과 피로강도 평가에 대한 연구)

  • 엄동석;김충희
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.112-124
    • /
    • 1993
  • It has been reported that fatigue damage sometimes occurred at the stress concentrated and dynamic loaded structural members of bulk carrier. In this paper, studies on fatigue strength of hull structures are reviewed, and the program for evaluating fatigue strength is developed. And the fatigue crack initiation and propagation on the end part of cargo hold frame of bulk carrier were calculated by FEM stress analysis and the fatigue strength evaluation program. These method can be applied not only to the crack initiation life but also to crack propagation life for the hull structural members at the hull design stage and be effective as the guideline to prevent the crack initiation or to estimate the fatigue strength for repairing of the fatigue damaged structures of real ships.

  • PDF