• 제목/요약/키워드: Cultured bone cell

검색결과 288건 처리시간 0.031초

치주인대세포와 치은섬유아세포의 분화에 미치는 rhBMP-2의 효과에 대한 연구 (The effect of rhBMP-2 on the osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts in vitro)

  • 김현종;최상묵;구영;류인철;정종평;한수부;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제32권2호
    • /
    • pp.389-402
    • /
    • 2002
  • BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. In addition, BMP stimulated osteoblastic differentiation in vitro in various types of cells. The aim of this study was to investigate the effect of recombinant human bone morphogenetic protein(rhBMP-2) on the proliferation and osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts. The cell number and alkaline phosphatase activity were measured in 3 experimental groups of human periodontal ligament cells and gingival fibroblasts (control group, rhBMP-2 50ng/ml group, and rhBMP-2 100ng/ml group) at 1 and 2 weeks after culture. At the same time, total RNA of cultured cells were extracted and reverse trascription polymerase chain reaction(RT-PCR) was performed to determine the expression of mRNA of bone matrix protein. RhBMP-2 had no effect on the cell proliferation of human periodontal ligament cells and gingival fibroblasts. Alkaline phosphatase activity was elevated significantly by rhBMP-2 in both cells. And periodontal ligament cells showed significantly higher alkaline phosphatase activity than gingival fibroblasts. ${\beta}$-actin, type I collagen, alkaline phosphatase, BMP-2 mRNA were expressed in all of the samples. Osteopontin, osteocalcin mRNA were expressed in all periodontal ligament cell groups, and rhBMP-2 50ng/ml group, rhBMP-2 100ng/ml group of 2 week culture period of gingival fibroblasts. Bone sialoprotein mRNA was only expressed in rhBMP-2 50ng/ml group and rhBMP-2 100ng/ml group of 2-week culture period. These results suggest that rhBMP-2 stimulates osteoblastic differentiation in human periodontal ligament cells and gingival fibroblasts in vitro.

골형성유도단백질의 첨가가 ${\Delta}^{12}-PGJ_2$가 유도하는 석회화에 미치는 영향 (The effect of rhBMP-2 on ${\Delta}^{12}-PGJ_2$ induced osteoblastic differentiation and mineralization)

  • 김원경;김경화;김종진;이영규;구영
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.345-357
    • /
    • 2005
  • Prostaglandin plays a significant role in the local control of bone metabolism associated with periodontal disease. ${\Delta}^{12}-PGJ_2$ is a natural $PGD_2$ metabolite that is formed in vivo in the presence of plasma. It is known for ${\Delta}^{12}-PGJ_2$ to stimulate calcification in osteoblastic cells. Bone morphogenetic protein(BMP) stimulated osteoblastic differentiation in various types of cells and greatly enhanced healing of bony defects. The purpose of this study was to evaluate the effect of rhEMP-2 on ${\Delta}^{12}-PGJ_2$ induced osteoblastic differentiation and mineralization in vitro. A human osteosarcoma cells line Saos-2 were cultured. In the test groups, 10-7M of ${\Delta}^{12}-PGJ_2$ or mixture of 10-8M of ${\Delta}^{12}-PGJ_2$ and 100ng/ml of rhBMP-2 or 100ng/ml of rhEMP-2 were added to culture media. After 1 day, 2 days and 4 days of culture period, the cell number was measured. Alkaline phosphatase activity was measure at 3 days. Reverse transcription polymerase chain reaction(RT-PCR) was performed to determine the expression of mRNA of bone matrix protein at 8 hours, 1 day and 7 days. The ability to produce mineralized nodules in rat osteoblasts(MC3T3-E1) was evaluated at 21 days. The results were as follows : 1. rhEMP-2 or mixture of rhBMP-2 and ${\Delta}^{12}-PGJ_2$ inhibited cell proliferation of human osteosarcoma cells. 2. rhEMP-2 or mixture of rhBMP-2 and ${\Delta}^{12}-PGJ_2$ stimulated alkaline phosphatase activity significantly higher than ${\Delta}^{12}-PGJ_2$ alone. 3. rhBMP-2 or mixture of rhEMP-2 and ${\Delta}^{12}-PGJ_2$ stimulated mineralization compared to ${\Delta}^{12}-PGJ_2$ alone. 4. mRNA of alkaline phosphatase, BMP-2, cbfa 1, Type I collagen were detected in the group treated with ${\Delta}^{12}-PGJ_2$/rhBMP-2, rhBMP-2 alone, ${\Delta}^{12}-PGJ_2$ alone. These results show that mixture of ${\Delta}^{12}-PGJ_2$ and rhBMP-2 causes more bone formation than ${\Delta}^{12}-PGJ_2$ alone while the bone formation effects of mixture of ${\Delta}^{12}-PGJ_2$ and rhBMP-2 are less than those of rhBMP-2 alone. Further researches would be necessary to clarify the interactions of these agents.

골수줄기세포가 배양된 생분해성 매트릭스를 이용한 소구경 인공혈관 개발

  • 조승우;임상현;김일권;홍유선;유경종;박현영;최차용;김병수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.45-47
    • /
    • 2002
  • Although Dacron and ePTFE have most widely been used for artificial vascular grafts, these materials cannot be used for small-diameter grafts (l.D.<6mm) due to thrombotic occlusion. To overcome this limitation, a small-diameter vascular graft was developed with stem cell and tissue engineering method. Autologous bone marrow stem cells were cultured and seeded onto small-diameter (4mm) collagen tubular matrices. The matrices were anastomosed to carotid arteries in canine models. Prior to implantation, histological and electron microscopical examination revealed stem cell adhesion and growth on the matrices. Angiography indicated that the vascular grafts maintained patent for 8 weeks. Histological examination showed the regeneration of endothelium, media and adventitia in the grafts. This study may allow us to step forward to the development of tissue-engineered small-diameter vascular graft appropriate for clinical applications.

  • PDF

Regeneration of Cardiovascular Tissues using Tissue Engineering and Mesenchymal Stem Cells

  • Kim, Byung-Soo
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제40회 국제학술심포지움
    • /
    • pp.28-37
    • /
    • 2003
  • Tissue engineering and stem cells show potentials to restore lost or malfunctioning human tissues or organs. Another cell source for tissue engineering of cardiovascular tissues is stem cell. This study reports the development of cardiovascular tissues using tissue engineering and mesenchymal stem cells. The blood vessels and heart valves were fabricated by culturing mesenchymal stem cells on biodegradable synthetic or natural matrices. Bone marrow was isolated from dogs or rats and mesenchymal stem cells were cultured. The cells were seeded onto biodegradable synthetic or natural matrices and implanted in dogs. Histological and immunohistochemical analyses were performed to examine the regenerated cardiovascular tissues. Histological and immunohistochemical analyses showed the complete regeneration of blood vessels and heart valves. Fluorescent labeling of cells prior to implantation and fluorescence examination of the regenerated tissues revealed that the implanted cells reconstituted the cardiovascular tissues. This study demonstrates the potential of tissue engineering and mesenchymal stem cells for the regeneration of functional cardiovascular tissues or organs.

  • PDF

MC3T3-E1 세포의 골기질 단백질 발현에 대한 혈소판유래성장인자-BB의 효과 (The Effects of Platelet- Derived Growth Factor-BB on the Expression of Bone Matrix Protein in the MC3T3-E1 Cells)

  • 김묘선;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제30권2호
    • /
    • pp.347-360
    • /
    • 2000
  • Bone remodeling results from the combined process of bone resorption and new bone formation which is regulated in part by some of the polypeptide growth factors such as platelet derived growth factor(PDGF), which has been known to be an important local regulator of bone cell activity and participate in normal bone remodeling. This process includes strictly regulated gene expression of several bone matrix proteins such as type I collagen and osteopontin, a 44 kDa phosphorylated glycoprotein, which has important roles in bone formation. The purpose of this study is to evaluate the effecs of PDGF-BB on the mRNA expression of bone matrix protein, type I collagen and osteopontin, in MC3T3- E1 cell culture. Cells were seeded at $5{\times}10^5$ cells in 10 ml of minimum essential medium alpha(${\alpha}-MEM$) containig 10% fetal bovine serum, 10 mM beta glycerophosphate. 0.1, 1, 10 ng/ml PDGF-BB were added to the cells for the day 3, 7, 14, 21, 28 and cultured for 24 hours. Type I collagen cDNA, Hf677, and osteopontin cDNA were used as probes for northern blot analysis. Total cellular RNA was purified at indicated day and northern blot analysis was performed. The results were as follows : Type I collagen mRNA expressions were higher at the day 3 and 7, and lower in the day 14, 21 in the control groups. In the experimental groups, mRNA expressions were increased when 0.1 ng/ml PDGF-BB were added on the day 3, 7, 21, and decreased in dose-dependent manner on the day 14, decreased at all added dose on the day 28. Osteopontin mRNA expressions were highest in the day 21 groups and lowest in the day 14 groups in the control groups. Interesting results were shown in the day 14 and 21 groups. We found that osteopontin mRNA level was increased in dose dependent manner in the day 14 groups, and decreased dose dependent manner in the day 21 groups. In conclusion, PDGF-BB may have various control effects on type I mRNA expression in the growth and differentiation process of MC3T3-E1 cells and may have contrary regulatory effects on osteopontin mRNA expression. For examples, when the baseline level of osteopontin mRNA was low, as in the day 14, PDGF-BB up-regulated osteopontin mRNA expression in dose dependent manner, and when the baseline level was high as in the day 21, PDGF-BB down-regulated dose dependent manner. Thus, it may be useful for clinical application in periodontal regeneration procedure if further study were performed.

  • PDF

Biological Effects of Different Thin Layer Hydroxyapatite Coatings on Anodized Titanium

  • Sohn, Sung-Hwa;Jun, Hye-Kyoung;Kim, Chang-Su;Kim, Ki-Nam;Ryu, Yeon-Mi;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Kim, Hye-Won;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.237-247
    • /
    • 2005
  • Several features of the implant surface, such as roughness, topography, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of various thin layer hydroxyapatite (HA) coatings on anodized Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on A (100 nm HA coating on anodized surface), B (500-700 nm HA coating on anodized surface), C ($1{\mu}m$ HA coating on anodized surface), and control (non HA coating on anodized surface) Ti. The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the four dental substrate types. MG63 cells cultured on A, C and control exhibited cell-matrix interactions. It was B surface showing cell-cell interaction. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

Stimulatory Effect of N-acetylcysteine on Odontoblastic Differentiation

  • Jun, Ji-Hae;Lee, Hye-Lim;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.187-195
    • /
    • 2008
  • Reparative dentine formation requires newly differentiated odontoblast-like cells. Therefore, identification of the molecule that stimulates the odontogenic differentiation of precursor cells in the tooth pulp will be helpful for the development of strategies to repair damaged pulp. In this study, we examined the effect of N-acetylcysteine (NAC) on the odontogenic differentiation of MDPC-23 cells, a mouse odontoblast-like cell line derived from dental papilla, and primary cultured rat dental papilla cells (RDPCs). NAC (1-30 mM) suppressed production of reactive oxygen species in MDPC-23 cells in a dose-dependent manner. Although 5 to 20 mM NAC did not alter MDPC-23 cell proliferation, 1 or 30 mM NAC significantly inhibited it. NAC enhanced mineralized nodule formation and the expression of several odontoblast differentiation-associated genes in both RDPCs and MDPC-23. This NAC stimulatory effect was significant, even at concentrations lower than 1 mM. However, NAC did not stimulate expression of bone morphogenetic protein-2, -4, or -7, which are known to enhance odontogenic differentiation. Since reactive oxygen species are also involved in the pulp toxicity of resin-based restorative materials, these results suggest that NAC may be a promising candidate for supplementation of dental restorative materials in order to enhance reparative dentine formation.

배양된 인간 골막기원세포의 조골활성 및 골기질 형성의 평가 (EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS)

  • 박봉욱;변준호;이성균;하영술;김덕룡;조영철;성일용;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.511-519
    • /
    • 2006
  • Autogenous bone grafts have been considered the gold standard for maxillofacial bony defects. However, this procedure could entail a complicated surgical procedure as well as potential donor site morbidity. Possibly the best solution for bone-defect regeneration is a tissue engineering approach, i.e. the use of a combination of a suitable scaffold with osteogenic cells. A major source of osteogenic cells is the bone marrow. Bone marrow-derived mesenchymal stem cells are multipotent and have the ability to differentiate into osteoblastic, chondrocytic, and adipocytic lineage cells. However, the isolation of cells from bone marrow has someproblems when used in clinical setting. Bone marrow aspiration is sometimes potentially more invasive and painful procedure and carries of a risk of morbidity and infection. A minimally invasive, easily accessible alternative would be cells derived from periosteum. The periosteum also contains multipotent cells that have the potential to differentiate into osteoblasts and chondrocytes. In the present study, we evaluated the osteogenic activity and mineralization of cultured human periosteal-derived cells. Periosteal explants were harvested from mandibule during surgical extraction of lower impacted third molar. The periosteal cells were cultured in the osteogenic inductive medium consisting of DMEM supplemented with 10% fetal calf serum, 50g/ml L-ascorbic acid 2-phosphate, 10 nmol dexamethasone and 10 mM -glycerophosphate for 42 days. Periosteal-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 14 of culture period, then decreased in intensity during the culture period. ALP mRNA expression increased up to day 14 with a decrease thereafter. Osteocalcin mRNA expression appeared at day 7 in culture, after that its expression continuously increased in a time-dependent manner up to the entire duration of culture. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. In conclusion, our study showed that cultured human periosteal-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix. As the periosteal-derived cells, easily harvested from intraoral procedure such as surgical extraction of impacted third molar, has the excellent potential of osteogenic capacity, tissue-engineered bone using periosteal-derived cells could be the best choice in reconstruction of maxillofacial bony defects.

혈소판농축혈장 내의 성장요소가 조골세포주의 활성도에 미치는 영향 (THE EFFECT OF GROWTH FACTORS IN PLATELET-RICH PLASMA ON THE ACTIVITY OF OSTEOBLAST CELL LINE)

  • 정태욱;김영수;김창회;장경수;임영준
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.175-191
    • /
    • 2004
  • Statement of problem: Platelet-rich plasma(PRP) is well known to be very effective method to stimulate and accelerate the healing of bone and soft tissue. However, there are few reports which deal with the mechanisms of the PRP on the activation of the osteoblasts. Purpose: This study was aimed to investigate the effect of growth factors in PRP on the activity of osteoblasts. Material and method: To evaluate the effect on human, human osteoblast cell line was cultured. PRP was extracted from the blood of a healthy volunteer. Using the recombinant growth factors of PDGF, $TGFT-\beta$, IGF-1, bFGF which are mainly found at bone matrix and their neutralizing antibody, the effect of PRP on the attachment and proliferation of osteoblasts was evaluated. To evaluate the autocrine and paracrine effects, conditioned media(CM) of PRP was made and compared with PRP. By the western blot analysis, the expression of growth factors in PRP, CM was examined. Cell morphology was compared by the light microscope. Results : 1) The effects of CM on osteoblast were similar to the effects of PRP. 2) PRP, CM, recombinant $TGF-\beta$, bFGF, IGF-1 showed significantly higher cellular attachment than control(p<0.05) in the cell attachment assay. In the cell proliferation assay, PRP, CM, recombinant $TGF-\beta$, IGF-1, bFGF, PDGF increased significantly cell proliferation(p<0.01). Among the recombinant growth factors, IGF-1 showed the highest cellular attachment and proliferation. 3) In the western blot assay, bFGF, IGF-1, PDGF weve equally expressed in PRP and CM. 4) The attachment of osteoblast cell decreased significantly after the addition of neutralizing antibody against $TGF-\beta$, IGF-1(p<0.05). In the cell proliferation assay, the addition of neutralizing antibody against $TGF-\beta$, bFGF, PDGF, IGF-1 decreased significantly the cellular proliferation(p<0.05). The amount of decreasing in the cell attachment and proliferation is the highest in at-lGF-1. 5) The cells in control group were flattened and elongated with a few cellular processes in the a light microscope. But, the cells appeared as spherical, plump cells with well developed cellular processes in experimental groups. The cells in PRP and CM had more prominent developed features than recombinant growth factor groups. Conclusions : These findings imply that PRP maximize the cellular activity in early healing period using the synergistic effect, autocrine, paracrine effects of growth factors and increase the rate and degree of bone formation.

Effect of High glucose on JNK/ERK signaling pathway in UMR106 cells

  • Jung, In-Ok;Jin, Mei-Hua;Kim, Sung-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.79-79
    • /
    • 2003
  • Recently diabetes has been found to be associated with metabolic bone diseases such as osteoporosis. In the present study, attempts have been made-to explore the effect of high glucose in bone formation. Osteoblast-like UMR 106 cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of UMR106 cells in a time- and dose- dependent manner as evidenced by MTT assay. For the evaluation of collagen synthesis, UMR 106 cells were cultured in high glucose media (44mM) for 24 h and the ratio of collagen content to total protein was measured. In addition, gene expression pattern of type I collagen was assessed by RT-PCR. The high concentration of glucose inhibited a collagen synthesis, a marker of bone formation activity. JNK, c- Jun N-terminal Kinase, is known to play an important role in stress-associated cell death. In this regard, we tested to determine whether high glucose has any effect on JNK activity. It has been found that treatment of high glucose induced phosphorylation of JNK. On the other hand, ERK phosphorylation was inhibited by high glucose in a dose-dependent manner. Taken together, Therefore these results indicate that inhibition of proliferation in UMR 106 cells following high glucose is related to JNK/ERK containing signal pathways. This study showed high glucose concentration could alter the bone metabolism leading to defective bone formation, suggesting that high glucose due to diabetes may playa significant role in the development of metabolic bone disease.

  • PDF