• Title/Summary/Keyword: Cultivation Environment

Search Result 1,640, Processing Time 0.032 seconds

Response of Yield and Quality in Major Domestic Rice (Oryza sativa L.) Varieties according to the Nitrogen Application Levels (질소시비수준에 따른 국내 주요 벼 품종의 수량 및 품질 반응)

  • Jong-Seo Choi;Jinseok Lee;Shingu Kang;Dae-Woo Lee;Woonho Yang;Seuk-Ki Lee;Su-Hyeon Sin;Min-Tae Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.342-361
    • /
    • 2022
  • In order to evaluate the effect of nitrogen application levels on yield and quality of rice varieties, a field experiment was conducted at National Institute of Crop Science of Korea from 2018 to 2020. Five levels (0, 3, 5, 7, and 9 kg/10a) of nitrogen fertilizer were treated to 21 Korean rice varieties. Yield, yield component, appearance quality, and protein content in rice were analyzed. The average head rice yield for 3 years decreased by 28%, 22%, 11%, and 8%, respectively, when cultivated with 0, 3, 5, and 7 kg/10a nitrogen application compared to cultivation with a standard nitrogen application amount, 9 kg/10a. The number of panicles per hill increased as the amount of nitrogen application increased, but there was no significant change in the number of grains per panicle and 1000-grains weight, and the number of panicles per hill showed relatively small annual variation compared to other yield components. There was no significant difference in the head rice ratio according to the nitrogen application amount, the broken rice ratio slightly decreased, and the floury rice ratio increased. The protein content of rice decreased with increasing nitrogen application in 2018 and 2019, and was the lowest at 7 kg/10a of nitrogen application, and showed a tendency to increase again at 9 kg/10a. In the case of 2020, as the amount of nitrogen application increased, the protein content showed a tendency to continuously increase. In terms of varieties, 13 varieties, including Chilbo, seemed to be capable of low-nitrogen cultivation because loss of the head rice yield was less and the protein content could be lowered to 6% or less according to 7 kg/10a nitrogen application.

Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models

  • Choi, Hee-Jeong;Lee, Seo-Yun
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.271-278
    • /
    • 2019
  • Mass cultivation of microalgae is necessary to achieve economically feasible production of microalgal biodiesel. However, the high cost of nutrients is a major limitation. In this study, corncob extract (CCE) was used as an inorganic and organic nutrient source for the mass cultivation of Chlorella vulgaris (C. vulgaris). Chemical composition analysis of CCE revealed that it contained sufficient nutrients for mixotrophic cultivation of C. vulgaris. The highest specific grow rate of C. vulgaris was obtained at pH of 7-8, temperature of $25-30^{\circ}C$, and CCE amount of 5 g/L. In the analysis using various growth models, Luong model was found to be the most suitable empirical formula for mass cultivation of C. vulgaris using CCE. Analysis of biomass and production of triacyglycerol showed that microalgae grown in CCE medium produced more than 17.23% and 3% more unsaturated fatty acids than cells cultured in Jaworski's Medium. These results suggest that growing microalgae in CCE-supplemented medium can increase lipid production. Therefore, CCE, agricultural byproduct, has potential use for mass cultivation of microalgae.

The Influence of Light Reduction on the Growth of Microcystis aeruginosa and Variation of Environmental and Chemical Parameters in Large-scale Cultivation System

  • Yang, Taehui;Cho, Ja-young;Kang, Ha-jin;Lee, Chang Soo;Kim, Eui-jin
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.336-343
    • /
    • 2020
  • Large-scale cultivation of Microcystis aeruginosa in different light conditions was conducted for verifying the cell growth in a greenhouse system. Environmental and chemical parameters of the large-scale culture medium were measured for analyzing the interaction between M. aeruginosa and its symbiotic bacteria. During cultivation, a difference in cell growth pattern was observed between control (natural light) and light-limited groups (reduction of blue, green, and blue/green light, respectively). Comparing the control group, the light reduced groups showed slow and delayed cell growth through the cultivation period. Also, there is differences in the consuming pattern of total nitrogen and total phosphorus which indicated that the possibility of interaction between M. aeruginosa and symbiotic bacteria.

Effect of Air Cleaner on the Occurrence of Mushroom Disease During Cultivation of Pleurotus eryngii (공기정화장치가 큰느타리버섯 병 발생에 미치는 영향)

  • Kim, M.K.;Lee, Y.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.135-148
    • /
    • 2019
  • King oyster mushroom(Pleurotus eryngii) is one of the most commercially important mushrooms in Korea. Development of fruit body and disease occurrence are sensitive to environmental conditions such as temperature, humidity, carbon dioxide(CO2) concentration. The purpose of this study was to investigate the changes in the growth environment of king oyster mushroom by installing Airocide, an air purifier for the purpose of improving mushroom cultivation environment. The results of the environment conditions, identification of pathogenic organisms and pathogenesis during the cultivation were as follows. Airocide operation increased the CO2 concentration of the cultivation room by more than 400 ppm on average, but the increase of CO2 concentration at this level had little effect on the quality and growth of fruit body. Operation of the Airocide tended to reduce the air humidity of the cultivation room and required more humidification. In humidifying conditions, the Airocide has the effect of lowering the species and density of bacteria and reducing bacterial symptoms and abnormal fruiting body of mushroom. Pseudomonas sp., the mushroom pathogen, was isolated from the cultivation room without Airocide, resulting in serious disease and loss of yields, so that only about 83% of substrate could harvest normal fruiting bodies. No disease symptom caused by bacteria and fungi in the cultivation room with Airocide. Trichoderma sp., Penicillium sp. and Cladosporium sp. were isolated from all experimental conditions, but did not inhibit fruit growth or caused diseased.

Shifting Cultivation Effects on Soil Environment in Upland Watershed of Bangladesh

  • Haque, S.M. Sirajul;Gupta, Sanatan Das;Miah, Sohag
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.179-188
    • /
    • 2014
  • This research reports the effects of shifting cultivation on soil environment collecting samples from 0-5 cm soil depth from five locations viz. at Burburichhara, Maichchari, Longadu, Sukurchhari and Muralipara in Rangamati district of Chittagong Hill Tracts (CHTs). Soil analyses showed that fungal and bacterial population, microbial respiration and active microbial biomass, maximum water holding capacity, conductivity and moisture contents were significantly (at least $p{\leq}0.05$) lower in shifting cultivated soil compared to adjacent mixed tree plantations at all the sites. On an average in soils of 5 different shifting cultivated lands fungal population was $1.33{\times}10^5$ CFU/g dry soil and bacterial population $1.80{\times}10^7$ CFU/g dry soil and in mixed plantations fungal population was $1.70{\times}10^5$ and bacterial population $2.51{\times}10^7$ CFU/g dry soil. Organic matter and exchangeable Ca and Mg contents were significantly (at least $p{\leq}0.05$) lower and bulk density significantly (at least $p{\leq}0.05$) higher in shifting cultivated land in most of the locations compared to adjacent mixed tree plantations. Ratios of microbial respiration and organic carbon as well as active microbial biomass and organic carbon were distinctly lower and pH higher at 3 locations in shifting cultivated soils compared to mixed plantations. Findings of various soil properties, therefore, suggest that shifting cultivation has deteriorating effects on soil environment.

Light environment and physiological response of Panax ginseng I. Experience on light in natural habitat,through cultivation under forest and artificial shade, and change of light control technique (인삼의 광환경과 생리반응 I.자생지. 임간 및 일복 재배에서 광경험과 광조절 방법의 변천)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.172-192
    • /
    • 1983
  • Light environment and growth of Panax ginseng In habitat and cultivation under natural shade were renewed. Grower's experiences on ginseng stand In relation to light environment were assessed. Change of shading method and grower's concepts on light requirement of ginseng plant in Korea, Manchuria and Japan was counted. Growth of wild ginseng was better under rich light. Optimum crown density index appeared to be 0.7 In natural habitat and 0.4 to 0.7 for the cultivation in forest. Change of light Intensity in forest was greatest in May and reached near to constant value (from 40% to 3% for broad leaf deciduous forest and loom 4% to 2% for pine forest). Insufficient light condition induced long and thin stem, poor flowering and seed bearing, and sequent dormancy. Relation between light and ginseng strand was not clear but light Interception with cool weather was effective. Topography and orientation of bed have been deeply considered for light environment. Panel or bark of won were used for shading in deep forest manly In Manchuria while reed blind and straw thatch were used in Korea. Kinds and number of shades material and seasonal or daily schedule have been simplified probably by labor pressure due to eulargement of plantation. Post height has been greater while width of roof, bed and ditch has changed lisle. Scientific survey in the past omitted important light control methods (complete light hardening etc) which has been practiced in specific areas. The concept and technique of light control in the past in Korea were delicate and intensive including the control of temperature and moisture. For the application of old concept in modem cultivation precise Investigation of the technique including the measurement of light, temperature and moisture is needed.

  • PDF

Establishment of Pre-Harvest Residue Limits (PHRLs) of Insecticide Clothianidin and Fungicide Fluquinconazole on Peaches during Cultivation Period (복숭아의 재배기간 중 살충제 Clothianidin 및 살균제 Fluquinconazole의 생산단계 농약잔류허용기준의 설정)

  • Park, Jae-Hun;Lim, Jong-Sung;Yoon, Ji-Yeong;Moon, Hye-Ree;Han, Ye-Hoon;Lee, Yong-Jae;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.271-276
    • /
    • 2012
  • BACKGROUND: It is hard to control the agricultural products exceeding MRL (maximum residue limit) before forwarding. Therefore, NAQS (National Agricultural Products Quality Management Service, South Korea) established PHRL (pre-harvest residue limit) on agricultural products during their cultivation periods. This study was performed to set the PHRLs of peach during cultivation period, and also to estimate biological half-lives for residues of clothianidin and fluquinconazole. METHODS AND RESULTS: Two groups of peach were treated under Korean GAP (Good Agricultural Practices) with application time, single and triple treatments. Sample was collected over 14days (each after 0, 2, 4, 6, 8, 10, 12, 14 days. 8times), and clothianidin and fluquinconazole were analyzed by HPLC/DAD and GC/ECD, respectively. CONCLUSION: The biological half-life of clothianidin in single treatment and triple treatment was 5.2days and 7.0days. That of fluquinconazole was also 3.9days and 4.1days, respectively. The PHRL of peach on 10days before harvest was 1.4 mg/kg in clothianidin and 1.8 mg/kg in fluquinconazole.

Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

  • Berthold, David Erwin;Rosa, Nina de la;Engene, Niclas;Jayachandran, Krish;Gantar, Miroslav;Laughinghouse, Haywood Dail IV;Shetty, Kateel G.
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.91-106
    • /
    • 2020
  • Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L-1 d-1 dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

Changes in Rice Yield and Quality According to the Levels of Phosphate and Potassium Fertilization Under Reduced Nitrogen Fertilizer Condition

  • Jinseok Lee;Jong-Seo Choi;Shingu Kang;Dae-Woo Lee;Woonho Yang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.122-122
    • /
    • 2022
  • In order to investigate changes in rice yield and quality according to phosphate and potassium fertilization levels when nitrogen fertilizer was applied at 7 kg·10a-1, a field experiment was conducted at National Institute of Crop Science of Korea in 2021. Three Korean rice varieties were grown in paddy fields, and phosphate and potassium fertilizer were treated at three levels(N-P-K 7-4.5-5.7 kg·10a-1, 7-3-3 kg·10a-1, 7-0-0 kg·10a-1). When phosphate and potassium fertilizers were not treated, the yield of Ilpum and Chilbo was significantly reduced, and there was no significant difference in Hopyung. The head rice ratio was significantly lower in the untreated plot of Hopyung and Chilbo, but there was no significant difference in the Ilpum. Protein content was significantly decreased in the untreated plot of Chilbo, and there was no significant difference in other varieties. As a result of this study, it was confirmed that yield, head rice ratio, and protein content were lowered when phosphate and potassium fertilizers were not treated, and the degree of decrease was different depending on the variety.

  • PDF

Study on Growth Responses of Soybean in Paddy Field for Establishing Environment-Friendly Cropping System (친환경 논 밭 윤환 콩 재배법 확립을 위한 논 콩 재배시 품종별 생육반응 연구)

  • Kim, Yong-Wook;Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • This study was conducted with two objectives ; one was to select the suitable soybean cultivars for cultivation in paddy field and the other was to establish the environment-friendly rotational cropping system of soybean instead of rice in paddy field. In order to evaluate growth adaptation and yields, Eve soybean cultivars were cultivated in Yeoncheon, Keonggi province, with two cultivation methods such as level row and high ridge. Growth of the top plants, such as stem length, number of branches, diameter of stem, were higher in high ridge than in level row, however, the differences among the cultivars were bigger than those between the cultivation methods. Dry weight of top plant was significantly different among the cultivars during whole growth stages, however, it was higher in level row than in high ridge at V5 stage while it became higher in high ridge as growth progressed. Roots were more developed in high ridge than in level row during whole growth stages. T/R ratio in level row was higher than that in high ridge. During whole growth stages, significant differences were observed among the cultivars in growth and yields in each cultivation method and yields of Eunhakong was the highest. In results, number of nodules and T/R ratio at V5 stage, number of pods at R2 stage, and number of seeds and T/R ratio at R5 stage had highly correlated with yields, respectively.

  • PDF