얼굴 영역 검출은 얼굴 인식, 얼굴 복원 등 산업 및 학술 여러 분야에 걸쳐 사용되는 기술이다. 고속의 얼굴 영역 검출을 위하여 고성능 하드웨어를 사용하거나 고속 알고리즘을 사용하는데, 본 논문에서는 GPU 기반 프로그래밍 기법인 CUDA를 이용하여 고속 얼굴 영역 검출 시스템을 구현하였다. 기존의 얼굴 영역 검출 시스템은 처리 속도의 한계로 인해 고속의 검출이 어려웠을 뿐 아니라 고속으로 동작하도록 하려면 고가의 시스템 부품을 사용하여야 하므로 사용자에게 부담을 안겨주었다. 그러나 nVidia 등 그래픽 칩셋 제조업체들이 속속 내놓고 있는 GPGPU 기술을 이용하여 얼굴 영역 검출 시스템을 구현할 경우 보다 저렴한 가격에 보다 뛰어난 성능을 가질 수 있도록 할 수 있다. 따라서 본 논문에서는 이러한 범용 GPU 사용 기술 중 하나인 nVidia의 CUDA를 이용하여 얼굴 검출 시스템을 구현하였다. 실험 결과 GPU 기반 시스템은 CPU 기반 시스템보다 고속으로 검출이 가능함을 확인하였다. 제안하는 방법은 nVidia 그래픽 카드가 설치된 시스템에서 고속의 감시카메라 서버 등으로 적용이 가능하다.
본 논문에서는 YOLO 시스템을 사용하여 보조 보행 기구를 인식 한 후 자동문 속도 조절에 대한 방법을 제안한다. Visual studio, OpenCV, CUDA를 활용하여 보조 보행 기구를 인식이 가능하게 신경망 훈련 및 학습 한 데이터를 기반으로 Raspberry Pi, 카메라 모듈을 활용하여 실시간 모니터링을 통해 보조 보행 기구를 인식하여 자동문의 속도를 조절을 구현했다. 이로써 거동이 불편한 장애인은 원활하게 건물 출입이 가능하다.
본 논문에서는 결합형 양방향 필터를 이용하여 깊이 영상을 실시간으로 보정하는 방법을 제안한다. 제안한 방법은 Kinect 깊이 카메라로부터 얻은 깊이 영상의 화질을 실시간으로 향상시키기 위해 GPU 내의 상수 메모리와 2차원 영상 처리에 적합한 텍스쳐 메모리를 사용한다. 또한, 단일 화소에 대한 결합형 양방향 필터 연산을 각 GPU 쓰레드(thread)에 할당한 다음 병렬로 처리하여 계산량을 현저히 감소시킨다. 그리고 깊이 영상의 품질을 더욱 높이기 위해 CUDA를 이용해 구현한 결합형 양방향 필터를 계층형 구조로 반복적으로 수행하여 폐색 영역이 채워진 깊이 영상을 얻을 수 있다. 실험 결과를 통해, 제안한 실시간 깊이 영상 보정 방법이 깊이 영상의 주관적 화질을 향상시키고, 초당 55 화면의 속도로 동작하는 것을 확인했다.
대표문자열 문제는 k개의 문자열로 구성된 집합 S가 주어졌을 때 S를 대표하는 한 문자열인 대표문자열을 찾는 문제이다. 환형문자열은 일반적인 문자열과는 달리 문자열의 첫 글자와 마지막 글자가 연결되어 원 모양을 이루는 문자열이다. 본 논문에서는 먼저 k=3이고 길이 n인 환형문자열들로 구성된 S에 대해, 거리반경과 거리합을 동시에 고려한 대표문자열 문제를 O(n)개의 쓰레드를 사용하여 $O({\mid}{\Sigma}{\mid}nlogn)$ 시간에 병렬적으로 해결하는 알고리즘을 제시한다. 이때, ${\Sigma}$는 각 문자열을 구성하는 문자집합이다. 다음으로 k=4이고 길이 n인 환형문자열들로 구성된 S에 대해 거리합 기반 대표문자열 문제를 O(n)개의 쓰레드를 사용하여 $O({\mid}{\Sigma}{\mid}n^2logn)$ 시간에 병렬적으로 해결하는 알고리즘을 제시한다. 이후 두 문제에 대한 병렬 알고리즘들을 CUDA를 이용하여 구현하고 순차 알고리즘들과의 실행 속도를 비교한 결과를 제시한다.
본 논문은 GPGPU가속을 이용한 스케일링 필터(scaling filter) 및 트랜스코딩(Transcoding)의 성능 향상 방법을 제안한다. 트랜스코딩 기술은 다양한 요구조건을 지닌 멀티미디어 기기에 적합하게 동영상을 가공하는 기술로, 오늘날 여러 분야에서 활용되는 중요한 기술이다. 그러나 트랜스코딩에는 대량의 연산이 필요하기 때문에 기존 트랜스코더(Transcoder) 사용자들은 오랜 처리시간을 감내 해야만 했는데, 이는 CPU만을 이용한 트랜스코딩이 충분히 효율적이지 못하기 때문이다. 본 연구에서는 고성능의 연산이 가능한 GPGPU기술을 활용하여, 트랜스코더의 스케일링 필터를 GPU 상에서 높은 병렬성을 가지고 동작하도록 개선함으로써 트랜스코더의 전체적인 성능을 향상시켰다. 개선된 트랜스코더는 다양한 크기의 동영상과 여러 종류의 스케일링 필터 옵션들에 대해 잘 동작함이 검증되었으며, 기본 옵션에서 36%, 최대 101%의 성능향상을 보였다.
GPU는 저렴한 비용으로 쉽게 대규모 데이터 병렬성을 활용할 수 있는 장점을 갖고 있어 많은 고성능 컴퓨팅 응용 분야에서 사용되고 있는 추세다. 행렬의 고유벡터를 구하는 power method는 웹 페이지의 중요도를 계산하는 PageRank 알고리즘 등 여러 응용 분야에서 활용되고 있는 방법으로써, 본 연구에서는 power method를 GPU에서 병렬화하여 구현하였으며, 성능을 최적화하기 위한 개선 방법을 제시하였다. Power method는 행렬과 벡터의 곱셈 연산이 반복적으로 수행되며 GPU에서 쉽게 병렬화가 가능하다. 그러나, 고유벡터의 수렴 여부 판단을 위한 연산 등의 작업과 다음 곱셈을 위한 벡터 크기의 조정 등의 작업이 부가적으로 필요하며, 이러한 작업은 GPU 내의 커널 코드를 여러 차례 호출하고 불필요한 데이터 이동을 유발하는 문제점이 있다. 본 연구에서는 커널 호출 회수를 줄이고 스레드 배치를 최적함과 동시에 수렴 여부 판단을 위한 연산을 최적함으로써 power method의 성능을 향상시켰다.
넓은 동적 범위와 고속 샘플링률로 신호를 양자화하면서 실시간으로 광대역 DDC를 수행하는 일은 시간 소모가 크기때문에 주로 하드웨어인 FPGA나 ASIC에서 구현이 되어 왔다. 실시간 광대역 소프트웨어 DDC는 신호 환경이 바뀌어도 유연하게 대처할 수 있으며, 재사용이 가능하다. 또한, 하드웨어보다 가격이 저렴한 장점을 가지고 있다. 본 논문에서는 광대역 DDC를 소프트웨어 기반으로 고속의 병렬처리 구조로 설계하여, 실시간으로 저장 가능한 시스템 설계에 대해 연구하였다. 마지막으로 신호를 실시간으로 수신하기 위한 핑퐁버퍼링 기법과 고속신호처리를 위한 CUDA를 적용하여 신호처리 규격을 만족하는 광대역 DDC 설계 과정을 검증하였다.
본 연구에서는 단일영상과 동영상에서의 효율적인 비사실적 렌더링 기법을 제안한다. 단일영상의 경우에는 최근 단일영상 NPR 기법에서 많이 사용되는 플로우 기반 DoG 필터와 Bilateral 필터를 CUDA 환경에서 구현하여 실시간 처리가 가능하게 한다. 또한 동영상의 경우에는 기존의 NPR 동영상 방법인 매 프레임마다 단일영상 NPR 기법을 적용하여 생성하는 방법이 아닌 첫 프레임은 단일영상에 적용되는 NPR기법을 사용하여 스타일화 하고, 다음 프레임부터는 움직임 벡터를 기반으로 한 픽셀 맵핑을 사용하여 이전 프레임에서 움직임이 있는 픽셀의 밝기 값을 다음 프레임의 움직임 벡터 위치로 복사함으로써 불필요한 계산량을 줄이고, 프레임 간의 일관성 또한 유지시키는 방법을 제안한다. 본 연구에서는 실험을 통하여 그 성능을 증명하였다.
비사실적 렌더링(NPR; Non-Photorealistic Rendering)은 2차원 영상과 3차원 모델을 대상으로 하는 방법이 다르며 각각의 대상에 NPR을 적용하여 두 콘텐츠를 혼합하면 이질감이 나타나는 문제점이 있다. 본 논문에서는 3차원 객체와 영상에 있어서 각각의 대상에 카툰 및 스케치와 같은 비사실적 효과를 적용하여 조화롭게 혼합하는 기법을 제시한다. 제안 기법은 2차원 영상의 데이터를 분석하여 컬러 분포 특징을 얻고 이를 이용하여 실사 영상이나 3D 객체의 컬러 수를 줄인다. 단순화된 컬러맵과 윤곽선 에지 데이터로부터 비사실적 렌더링을 실시한다. 컬러맵 정보의 추출 및 적용 과정에서 자연스러운 장면 연출을 위해서 영상분할 과정이 필요하다. 그러나 영상분할 기법은 많은 연산을 필요로 한다. 특히 크기가 큰 입력에 대해서는 비사실적 렌더링에 많은 시간이 소요된다. 처리 시간이 많은 영상분할의 고속화를 위하여 GPU(Graphics Processing Unit)를 이용한 병렬 컴퓨팅을 할 수 있는 GPGPU(General-Purpose GPU)를 사용한다. GPGPU의 사용으로 알고리즘의 수행속도를 크게 개선하였다. 또한 영상분할 후 단순화된 컬러를 추출하여 일련의 컬러맵을 생성한 뒤 3D 객체에 NPR을 적용할 때 추출해낸 컬러맵을 적용하여 2차원 영상과 3차원 객채 간의 이질감을 줄이고 조화롭게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.