• Title/Summary/Keyword: Cucumis melo L.

Search Result 139, Processing Time 0.028 seconds

Effect of the Foliar Application of Amino Acid Mixture on the Growth of Melon Seedlings (아미노산 엽면 시비가 멜론 묘의 생육에 미치는 영향)

  • 김영식;김혜진
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.74-80
    • /
    • 2002
  • The effect of the foliar application of amino acid mixture on the growth of melon (Cucumis melo L.) seedlings was investigated. The amino acid treatments were initiated at the first (Ll) or second (L2) fully expanded leaf stage. The concentrations of amino acid mixture used were 0,10, 20, and 30 mg . L$^{-1}$ . At Ll stage, the fresh and dry weights of shoot were high in the amino acid treatments. Plant height was the highest in 30 mg . L$^{-1}$ at the third sampling of Ll. At L2 stage, shoot fresh weight was the greatest when the concentration of amino acid mixture was 30 mg.L$^{-1}$ at the third sampling. Plant height was the highest in 30 mg L$^{-1}$ at the second and third samplings. At the third sampling of Ll stage the amino acid mixture affected leaf length and leaf width of the first true leaf. At the third sampling of L2 stage leaf length was not significantly dirtferent between treatments, while leaf width was greater in amino acid treatments. At the second and third samplings of Ll stage the amino acid mixture had effect on leaf length and leaf width of the second true leafs which were not significantly different between treatments at L2 stage. Leaf length and leaf width of the third true leaf were affected by amino acid treatments. In conclusion, when the first true leaf expanded\ulcorner three foliar applications of 20-30 mg . L$^{-1}$ amino acid mixture can stimulate the growth of melon seedlings. If the amino acid mixture is sprayed at the second true leaf stage, two foliar applications of 30 mg . L$^{-1}$ amino acid mixture can improve the growth of melon seedlings.

Growth Characteristics of Hydroponically Grown Melon according to Volume of Granular Rockwool and Substrates of Coir and Rockwool (입상 암면 용량과 코이어 및 암면 배지 종류에 따른 수경재배 멜론의 생육 특성)

  • Dae Ho Jung;Su Hwan Oh;Da Mi Kim;Su Oh Lee;Chul Hee Cho;Hye Won Cho;Chul Kyoo Ha;Hyun-Ah Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.72-80
    • /
    • 2023
  • Melons, a rich source of vitamins and fibers, are commonly grown in the soil. Hydroponic cultivation could improve yield and quality of melon and selection of substrate volume and the kind of substrates is important for hydroponic cultivation of melons. This study investigated the effect on melon growth according to volume of granular rockwool and substrates of coir and rockwool slab. 'Geumsegye' melon (Cucumis melo L. cv. Geumsegye) was cultivated hydroponically according to volume of granular rockwool to 1.0, 1.5, 2.0, 3.0, and 4.0 L, and was also cultivated using coir and rockwool slabs. Logistic model was applied to estimate the growth characteristics of melons such as plant height, leaf length, leaf width, and the characteristics of fruit. The growth characteristics of melons were significantly increased at 4.0 L compared to those grown of 1.0 L volume of on granular rockwool, and the results were the highest in coir and rockwool slabs. Melons grown in rockwool slabs showed the largest fruit fresh weight, fruit length, and fruit width. During hydroponic cultivation, growth characteristics of melon appropriate at the 4.0 L volume of granular rockwool, and the highest at coir and rockwool slabs. This study provides a basis for understanding the effect of root zone environment to the growth characteristics and fruit quality of non-netted melon.

Distribution of Free Sugars in the Various Portions of Watermelon (Citrullus vuigaris L.) and Muskmelon (Cucumis meio var. reticulatus Naud.) (수박과 멜론의 부위별 유리당 함량 분포에 관한 연구)

  • Sohn, Joo-Yong;Ban, Sung-Chul;Hong, Sung-Hoi;Shin, Jeong-Sheop
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.200-205
    • /
    • 1996
  • This experiment was conducted to characterize and quantify the free sugars (glucose, fructose, sucrose, maltose) contained in many different portions of watermelon (Citrus vulgaris L.) and muskmelon (Cucumis melo var. reticulatus Naud.) fruits by High Performance Liquid Chromatography (HPLC). Free sugars were mainly fructose, glucose, sucrose, and their contents were variable among portions. Total free sugar contents were higher in the stylar end and side than in the stem end of both watermelon and muskmelon. Total free sugar contents increased from the periphery toward the central core in watermelon and except central core content seeds in muskmelon Ratio of nonreducing to reducing sugars [(fructose + glucose)/sucrose] was gradually decreased from the periphery toward the middle area in watermelon, though the central core showed higher value than the middle area. For the edible portion of muskmelon, the ratio was decreased toward middle area, and no significant difference was observed between the central core and the middle area. However, reducing sugars and nonreducing sugar were all increased from the periphery toward the central core in watermelon. In contrast with watermelon, reducing sugars were decreased in muskmelon.

  • PDF

Lysophosphatidylethanolamine Treatment Delays Leaf Senescence and Improve Fruit Storability in Melon (Cucumis melo L.)

  • Hong, Ji-Heun
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.158-161
    • /
    • 2012
  • The influence of lysophosphatidylethanolamine (LPE) on anti-senescence of melon leaves and the change in fruit quality during the storage at low temperature were studied. In most of the crops, freshness of leaves is important factor for characteristics of fruits, such as sugar contents, color, and firmness. Melon ($Cucumis$ $melo$ L. cv. Prince) plants were sprayed with LPE at 5 and 3 weeks before commercial harvest. In upper part, LPE treatment showed slight high number of fresh leaf compared to no treatment (None). However, in lower part, LPE resulted in apparent inhibition effect on senescence, showing that lower side of melon plant kept fresh upon LPE application up to about 30%. The SSC of melon treated with LPE was similar to that of fruit from None at harvest. There was no change in soluble solids content (SSC) for all treatment during the storage at $7^{\circ}C$. There were no significant differences in firmness of mesocarp from melons given different treatments at harvest. The firmness of mesocarp from melon treated with LPE was higher than none after 2 weeks storage. The electrolyte leakage means for melon treated with LPE did not differ significantly from the means at initial storage after 2 weeks storage among the treatments. None increased 57% from its initial electrolyte leakage during storage. These results suggest that the application of LPE may have potential to inhibit senescence of leaves and maintain fruit quality during the storage in melon.

Hypoglycemic Activity of the Hexane Extract of Oriental Melon (Cucumis melo L. var. makuwa Makino) Seeds and Its Active Compounds

  • Chen, Lei;Kim, Hye Suk;Choi, Bo-Ram;Yang, Shaonan;Xu, Enning;Suh, Jun Kyu;Kang, Young-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.622-628
    • /
    • 2014
  • The aim of this work is to evaluate the potential of oriental melon (Cucumis melo L. var. makuwa Makino) seeds for the management of type 2 diabetes by controlling glucose absorption. The ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory effects of the hexane extracts from oriental melon seeds were investigated. A bioassay-guided fractionation technique was used to elucidate the principal active components. The results show that the hexane extract from oriental melon seeds exhibited high inhibitory activities against ${\alpha}$-glucosidase and ${\alpha}$-amylase. The hexane extract was further fractionated into four sub-fractions. Among them, the sub-fraction F-1 exhibited the most potent anti-diabetic effect. The active components were isolated and identified by gas chromatography/mass spectroscopy (GC-MS). Free fatty acids showed significant hypoglycemic activity (p < 0.001) and fatty acid composition influenced enzyme inhibitory activities. These results suggest that oriental melon seeds could be used to prevent type 2 diabetes.

Draft Genome Sequence of Bacillus thuringiensis serovar aizawai AS23, Isolated from the Rhizosphere of Korean Melon (Cucumis melo L.)

  • Da-Ryung Jung;GyuDae Lee;Kyeongmo Lim;Yeonkyeong Lee;Ga-Yeon Nam;Do-Yeun Won;Na-Yun Park;Young-Jin Seo;Jae-Ho Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.535-537
    • /
    • 2023
  • We report the draft genome sequence of Bacillus thuringiensis serovar aizawai AS23, an insecticidal strain targeting lepidopteran pests, which was isolated from the rhizosphere of Korean melon (Cucumis melo L.). The genome of strain AS23 comprising 6,846,584 bp with a G + C content of 34.83% was assembled to 11 contigs obtained using hybrid assembly. Additionally, we mined the genome for pesticidal genes, identifying several insecticidal genes, including Cry1Aa3, Cry1Ca9, Cry1Da2, Cry1Ia44, Cry2Ab41, Cry9Ea9, Spp1Aa1, and Vip3Aa86.

High Frequency Somatic Embryogenesis and Plant Regeneration in Seedling Explant Cultures of Melon (Cucumis melo L.) (멜론(Cucumis melo L.) 유묘 절편으로부터 고빈도의 체세포배발생과 식물체 재분화)

  • 최필선;소웅영;조덕이;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Cotyledonary and hypocotyl explants of melon seedlings were cultured on Murashige and Skoog's (MS) medium supplemented with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) and benzyladenine (B.A).Up to 22% of cotyledonary explants and 7%, of hypocotyl explants, respectively: Produced somatic embryos through intervening two types of calli: bright yellow compact (BYC) callus and pale-yellow compact (PYC) callus. BYC callus was capable of producing somatic embryos at initial culture, but it became necrotic as subrulhues proceeded. In contrast UC callus was incapable of producing somatic embryos during initial culture (first 6 weeks), but it became bright-yellow friable (BYF) callus with forming a few globular embryos after 2 months of subculture, indicating that the callus turned embryogenic. The embryogenic capacity of BYF maintained for over one year when the callus was sucultured at 4-week interval. Upon transfer onto MS basal medium the callus gave rise to numerous somatic embryos and subsequently converted to plantlets. Plantlets were transplanted to potting soil and grown to maturity in the phyotron.

  • PDF

Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops (박과작물의 유연관계 분석을 통한 수박 EST-SSR 마커의 종간 적용성 검정)

  • Kim, Hyeogjun;Yeo, Sang-Seok;Han, Dong-Yeop;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.93-105
    • /
    • 2015
  • This study was performed to analyze genetic relationships of the four major cucurbitaceous crops including watermelon, melon, cucumber, and squash/pumpkin. Among 120 EST-SSR primer sets selected from the International Cucurbit Genomics Initiative (ICuGI) database, PCR was successful for 51 (49.17%) primer sets and 49 (40.8%) primer sets showed polymorphisms among eight Cucurbitaceae accessions. A total of 382 allele-specific PCR bands were produced by 49 EST-SSR primers from 24 Cucurbitaceae accessions and used for analysis of pairwise similarity and dendrogram construction. Assessment of the genetic relationships resulted in similarity indexes ranging from 0.01 to 0.85. In the dendrogram, 24 Cucurbitaceae accessions were classified into two major groups (Clade I and II) and 8 subgroups. Clade I comprised two subgroups, Clade I-1 for watermelon accessions [I-1a and I-1b-2: three wild-type watermelons (Citrullus lanatus var. citroides Mats. & Nakai), I-1b-1: six watermelon cultivars (Citrullus lanatus var. vulgaris S chrad.)] a nd C lade I -2 for melon and cucumber accessions [I-2a-1 : 4 melon cultivars(Cucumis melo var. cantalupensis Naudin.), I-2a-2: oriental melon cultivars (Cucumis melo var. conomon Makino.), and I-2b: five cucumber cultivars (Cucumis sativus L.)]. Squash and pumpkin accessions composed Clade II {II-1: two squash/ pumpkin cultivars [Cucurbita moschata (Duch. ex Lam.)/Duch. & Poir. and Cucurbita maxima Duch.] and II-2: two squash/pumpkin cultivars, Cucurbita pepo L./Cucurbita ficifolia Bouche.}. These results were in accordance with previously reported classification of Cucurbitaceae species, indicating that watermelon EST-SSRs show a high level of marker transferability and should be useful for genetic study in other cucurbit crops.

Vegetative Compatibility Groups and Pathogenicity Variation among Isolates of Fusarium oxysporum f.sp. melonis

  • Ahn, Il-Pyung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.227-230
    • /
    • 2000
  • A total of 90 isolates of Fusarium oxysporum f.sp. melonis, the causal agent of oriental melon (Cucumis melo var. makuwa) wilt, was isolated from symptomatic tissues of oriental melon from 4 provinces in Korea. These isolates were grouped into vegetative compatibility groups (VCGs) by demonstrating heterokaryosis through complementation using nitrate nonutilizing (nit) mutants. No self-incompatibility was observed in any of isolates. All isolates were grouped into 3 VCGs ; A, B, and C. iSOLATES BELONGING TO VCG A and VCG B accounted for 87% and 91% of the fungal population collected in 1991 and 1993, respectively. As the increment of cultivation period in the same field, the proportion of isolates belonging to VCG B increased whereas that of isolates belonging to VCG A decreased. Mean virulence of a total population increased as the increment of cultivation period in the same field. Isolates belonging to VCG B showed the highest increment of virulence. These data suggest that replanting of a host plant in the same field may cause increase of virulence in the pathogens. Furthermore, virulence of F. oxysporum f.sp. melonis isolates is related to the VCGs.

  • PDF

Observation of Root-knot Nematodes in the Root Gall Formed on Oriental Melon

  • Kim, Dong-Geun;Kim, Seung-Han;Lee, Joong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.73-76
    • /
    • 2005
  • Oriental melon, Cucumis melo L. cv. Geumssaragieuncheon, grafted on Shintozoa (Cucurbit maxima ${\times}$ Cu. moschata) was planted in a greenhouse infested with Meloidogyne arenaria and root galls were examined five months after planting. A gram of root gall was volumed at ca. 10 cm3 and contained in an average of 363 females (170 developing and 193 matured females), 2,120 secondstage juveniles (J2), and 13,074 eggs. In addition, there was 56 J2 per $cm^3$ soil around the infested plant. An oriental melon had an average of 134.6 g of root gall (70% of total root weight) per 0.72 $m^2$ area. In a conservative estimation, an oriental melon plant could accommodate ca. 1.2 ${\times}$ $10^7$ eggs and J2 per 0.72 $m^2$. The eggs contained in root tissues could be an important inoculum source to the next crop and the fate of these eggs are well worth further investigation.