• Title/Summary/Keyword: CuZnAl shape memory alloy

Search Result 11, Processing Time 0.023 seconds

Helical coil springs property in Cu-Zn-Al shape memory alloy (Cu-Zn-Al 형상기억합금의 코일스프링 특성)

  • Kwon, Hee-Kyung;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • In this study, the properties of coil spring made by Cu-Zn-Al and B added shape memory alloys are investigated. The measurement of recovery displacement and energy with increasing weight, and thermocycling properties have been studied using displacement measuring device. Transformation temperature and phase change by thermocycling have been also investigated by DSC and X-ray diffractometer. Grain size of the alloy is refined from 1.2mm to $400{\mu}m$ by 0.06wt% of B addition. The maximum recovery energy of the coil spring for B added alloy is larger than that of no B added alloy, it is because of grain refinement. And shape memory ability of the coil spring by thermocycling decrease with increasing thermocycling after thermocycle under load. The degradation of shape memory properties of coil spring by thermocycling is improved by B addition.

  • PDF

Manufacturing of Cu-Zn-Al shape memory alloy using spark plasma sintering (SPS법을 이용한 CuZnAl계 형상기억합금의 제조)

  • 박노진;이인성;조경식;김성진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.172-177
    • /
    • 2002
  • The CuZnAl alloys have some advantages against other shape memory alloys, such as the widely variable transformation temperature, the low cost and easy fabrication. The alloys have been produced mostly by metallurgical methods. Thereby a tendency to large grain sizes is observed, which causes brittle properties of the materials. In order to avoid these deficiencies a special powder metallurgical process, SPS(spark plasma sintering), is applied in the present investigation. The starting materials were the pure (99.9 %) Cu, Zn and Al element powders with different particle size. The relatively fine grained and homogeneous Cu-24.78Zn-9.11Al (at.%) and Cu-13.22Zn-17.24Al (at.%) shape memory alloys were obtained using the powders with size of 75-150 $\mu$m. The average grain size is about 70 $\mu$m and the phases at room temperature are the austenitic and martensitic phase respectively.

Manufacturing of Cu-26.7Zn-4.05Al(wt.%) Shape Memory Alloy Using Spark Plasma Sintering (Spark Plasma Sintering을 이용한 Cu-26.7Zn-4.05Al(wt.%) 형상기억합금의 제조)

  • Park, No-Jin;Lee, In-Sung;Cho, Kyeong-Sik;Kim, Sung-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.352-359
    • /
    • 2003
  • In order to control the grain size, the spark plasma sintering technique is applied for the manufacturing of Cu-26.7Al-4.05AI(wt.%) shape memory alloy with pure Cu, Zn, and Al element powders. The sintering processes were carried out under different atmospheres. The sintered bodies were denser under Ar or Ar+4%$H_2$gas atmosphere than under vacuum. With use of small-sized powders, a very small average grain size of 2∼3 $\mu\textrm{m}$ was obtained, but the single phase was not formed. With the large-sized powders the single austenitic phase was observed with the average grain size of $70∼72\mu\textrm{m}$. When the different size of raw powders was mixed, it is confirmed that the average grain size of the manufactured alloys was 15 $\mu\textrm{m}$ with single austenitic phase, but the distribution of grain size was not uniform.

The Reverse Shape Memory Effect in a DO3 CuZnAl Alloy (DO3 CuZnAl 합금에 있어서의 역형상기억효과)

  • Chung, In-Sang;Lee, In-Chul;Park, Jung-Sig;Lee, Soon-Lin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1990
  • Since the reverse shape memory effect(RSME) was reported in a CuZnAl alloy, further study has been done on the mechanism of this phenomenon and reported that it occurs by the bainitic transformation. But the present authors revealed in the previous work that the RSME in a B2 CuZnAl alloy is not caused by the shear process involved in the bainitic transformation and also that the RSME takes place as the remaining ${\alpha}^{\prime}{_2}$ phase, which is two-step transformed strain induced martensite, is newly transformed into ${\alpha}$ phase. In order to provide further evidence in supporting the facts, thus, more detailed investigations have been carried out in a $DO_3$ CuZnAl alloy.

  • PDF

The effect of thermal treatment of shape memory alloy with the kind of impurity (불순물의 종류에 따른 형상기억합금의 열처리효과)

  • Park, Sung-Kun;Yoo, Pyung-Kil;Jeen, Gwang-Soo;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • For fine control of operating temperature of shape memory alloy, we investigated the effect of thermal teratment of shape memory alloy with the impurity kind. The martensitic transformation temperature in a Cu-17.25Zn-15Al and Cu-17.25Zn-15Al-1Ag/Fe was measured using electrical resistivity as a function of quenching temperature. Order-disorder phase transition temperatures in parent phase were measured and kind of transition were distinguised by DSC(differential scanning calorimeter) with heating rate variation. And structual changes were studied with XRD. For the Cu-17.25Zn-15Al shape memory alloy, the order-disorder phase transition temperature, $T_{B2}$ and $T_{L21}$ was 809K and 610K and for the Cu-17.25Zn-15Al-1Ag and Cu-17.25Zn-15Al-1Fe specimen $T_{B2}$ and $T_{L21}$ was 794K and 610K, and 803K and 613K, respectively. In all the specimens, quenching from near $T_{B2}$ leads to an increase in martensitic temperature, whereas quenching from near $T_{L21}$ leads to an decrease in martensitic temperature.

  • PDF

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Study on the Effect of Crystal Morphology on Mechanical Property in Cu-Zn-Al Shape Memory Alloy (Cu-Zn-Al 형상기억합금에서 기계적 성질에 미치는 결정형상의 영향에 관한 연구;주조조직과 재결정처리에 따른 기계적 성질과 형상기억능의 변화)

  • Hwang, Sung-Jun;Lee, Jin-Hyung;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.9 no.1
    • /
    • pp.58-66
    • /
    • 1989
  • The effect of heat treating temperature and ${\alpha}$ phase In the ${\beta}$ phase matrix were investigated for ${\beta}-CuZnAl$ shape memory alloys by tension test, fatigue test, and shape memory effect test. After heat treatment at $677^{\circ}C$, $750^{\circ}C$, $800^{\circ}C$ and $850^{\circ}C$ for 10 min. respectively, static fracture stress(${\sigma}_f$), fatigue fracture stress(${\tau}_{max}$) at $10^6$ cycle, and elongation(${\epsilon}_f$) was $24.2kg/mm^2$, $17.21kg/mm^2$ and 11.8%, respectively. As heat treating temperature decreased, fracture surfaces of the specimens were changed from the intergranular to the transgranular fracture mode. Especially, the a phase precipitated in the ${\beta}$ phase matrix had an effect on crack propagation and the fracture surface was characterized by dimple-like pattern when crack propagated in transgranular cracking mode. Precipitation of the ${\alpha}$ phase in the ${\beta}$ phase matrix lowered the transformation temperature by $10^{\circ}C$, and about 2.5 vol.% ${\alpha}$ phase did not affect the shape memory effect examined by the bending test.

  • PDF

The Effect of Cold-rolling on Microstructure and Transformation Behavior of Cu-Zn-Al shape Memory Alloy (냉간가공에 의한 CuZnAl계 현상기억합급의 결정립미세화와 특성평가)

  • Lee, Sang-Bong;Park, No-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.322-326
    • /
    • 1999
  • In this study, cold-rolling and appropriate annealing was adopted for the grain refining of Cu-26.65Zn-4. 05Al-0.31Ti(wt%) shape memory alloy. For the cold deformation of this alloy the ducti1e $\alpha$-phase must be contained. After heat treatment at $550^{\circ}C$ the $(\alpha+$\beta)$-dual phase with 40vol.% $\alpha$-phase was obtained which could be rolled at room temperature. This alloy was cold rolled into a final thickness of 1.0mm with total reduction degrees of 70% and 90%. The rolled sheets were betanized at $800^{\circ}C$ for various times, then quenched into ice water. The grain size of co]d rolled samples were $60~80\mu\textrm{m}$ which is much smaller comparing with the hot-rolled samples. And the 90% rolled sample showed smaller grain size than the case of the 70% rolled one. The small grain size had influence on the phase transformation temperatures and stabilization of the austenitic phases.

  • PDF

Modeling of the Reorientation Behavior of a Single Crystalline Shape- Memory Alloy by a Micromechanical Approach (미시역학적 접근에 의한 단결정 형상기억합금의 리오리엔테이션 거동 모델링)

  • 구병춘
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.250-257
    • /
    • 2000
  • A Helmholtz free energy for a martensitic transformation of a single crystalline shape-memory alloy is obtained by a micromechanical approach, 24 variants of the single crystal are taken into account. In the framework of irreversible thermodynamics, a kinetic relation, a martensitic nucleation criterion and the reorientation criterion of martensitic variants are obtained. These relations are valid for a three-dimensional proportional or non-proportional mechanical loading or a combination of mechanical and thermal loading. Reorientation behavior of a single crystalline shape-memory alloy CuZnAl is simulated. When a tensile load is applied to a thermally-induced martensite, 24 self-accommodated martensitic variants are reoriented to the most favorable variant. In the following unloading, the most favorable variant in the tensile load is reoriented to the most favorable variant in this loading condition.

  • PDF

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.