• Title/Summary/Keyword: CuSn Alloys

Search Result 134, Processing Time 0.026 seconds

A Study on the Wear Characteristics of Bearing According to its Material in Scroll Compressor (스크롤 압축기의 크랭크 샤프트의 베어링 재질에 따른 마모특성에 관한 실험적 연구)

  • Sung, Chi-Un;Park, Young-Do;Hwang, Yu-Jin;Back, Gee-Dae;An, Sung-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.194-202
    • /
    • 2008
  • In this study, we investigated the tribology behaviour of two different bearing materials. One of these alloys content is Cu(90)-Sn(10) alloy and is widely used in the automotive industry.The other is Al alloy. This bearing content is Al-Sn-Si-Cu. Therefore, it is required to study on the lublicating characteristics of bearing according to different materials. In this study, compressor bearings made by respectively "PTFE solid lubricant" and "AI alloy with superior load carrying capacity, rubbing and impact endurance", have gone through journal bearing test. Lubrication and abrasion characteristics are evaluated by analyzing the material characteristics of a scroll compressor bearing bush. The AI alloy bearing showed the most excellent lubrication and abrasion characteristics than Cu-Sn alloy under high load condition.

  • PDF

Effect of Final Annealing Temperature on Microstructure and Creep Characteristics of Nb-containing Zirconium Alloys (Nb 첨가 Zr 합금의 미세조직과 Creep 특성에 미치는 마지막 열처리 온도의 영향)

  • Park, Yong-Gwon;Yun, Yeong-Gwon;Wi, Myeong-Yong;Kim, Taek-Su;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.879-888
    • /
    • 2001
  • The effects of final annealing temperature on the microstructure and creep characteristics were investigated for the Zr-lNb-0.2X (X=0, Mo, Cu) and Zr-lNb- 1Sn-0.3Fe-0.1X (X=0, Mo, Cu) alloys. The microstructures were observed by using TEM/EDS, and grain size and distributions of precipitates were analyzed using a image analyzer. The creep test was performed at $400^{\circ}C$ under applied stress of 150 MPa for 10 days. The $\beta$-Zr was observed at annealing temperature above $600^{\circ}C$. In the temperature above$ 600^{\circ}C$, the grain sizes of both alloy systems appeared to be increased with increasing the final annealing temperature. The creep strengths of Zr-1Nb-1Sn-0.3Fe-0.1X alloys were higher than those of Zr-1Nb-0.2X ones due to the effect of solid solution hardening by Sn in Zr-lNb-lSn-0.3Fe-0.1X alloy system. Also, Mo addition showed the strong effect of precipitate hardening in both alloy systems. The creep strength rapidly decreased with increasing the annealing temperature up to $600^{\circ}C$. However, a superior creep resistance was obtained in the sample that annealed to have a second phase of $\beta$-Zr. It was considered that the appearance of $\beta$-Zr would play an important role in the strengthening mechanism of creep deformation.

  • PDF

Effect of Alloying Elements on the Thermal Creep of Zirconium Alloys

  • Cheol Nam;Kim, Kyeong-Ho;Lee, Myung-Ho;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.372-378
    • /
    • 2000
  • The effect of alloying elements on the creep resistance of Zr alloys was investigated using thermal creep tests that were performed as a part of advanced fuel cladding development. The creep tests were conducted at 40$0^{\circ}C$ and 150 MPa for 240 hr. A statistical model was derived from the relationship between the steady-state creep rate and the content of individual alloying elements. The creep strengthening effect decreased in the following sequence : Nb, Sn, Mn, Cr, Mo, Fe and Cu. The high creep resistance of Sn and the opposite effect of Fe on zirconium alloys seem to be associated with their lowering and enhancing, respectively, the self-diffusivity of the zirconium matrix.

  • PDF

A Study on the Recrystallization Behavior and Microstructure of Zr, Zircaloy-4 and Zr-Nb Alloys (Zr, Zircaloy-4, Zr-Nb 합금의 미세조직 및 재결정 거동에 관한 연구)

  • Lee, Myeong-Ho;Choe, Byeong-Gwon;Baek, Jong-Hyeok;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.422-429
    • /
    • 2000
  • To investigate the effect of annealing temperature and time on the recrystallization behavior and microstructure of Zr-based alloys, the specimens of Zr-0.8Sn-0.4Nb-0.4Fe-0.2Cu, Zr-1Nb, Zircaloy-4, and unalloyed Zr were cold-worked and annealed at 400, 500, 600, 700, 800, $900^{\circ}C$ for 30 to 5000 minutes. The hardness, microstructure and precipitate of the specimens were investigated by using micro-hardness tester, optical microscope and transmission electron microscope, respectively. The recrystallization of Zr-based alloys occurred between $400^{\circ}C$ and $600^{\circ}C$. As the content of alloying elements increased, the hardness and recrystallization temperature of the alloys increased though the grain sizes after recrystallization decreased. It was supposed that the hardness of Zr-based alloy with Fe or Cu increased during recovery by the formation of Fe or Cu precipitates.

  • PDF

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

Atomization Using a Pressure-Gas-Atomizer

  • Achelis, Lydia;Uhlenwinkel, Volker;Lagutkin, S.;Sheikhaliev, Sh.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.4-5
    • /
    • 2006
  • An update and the latest results on molten metal atomization using a Pressure-Gas-Atomizer will be given. This atomizer combines a swirl-pressure atomizer, to generate a liquid hollow cone film and a gas atomizer to atomize the film and/or the fragments of the film. The paper is focused on powder production, but this atomization system is also applicable for deposition purposes. Different alloys (Sn, SnCu) were atomized to study the characteristics of the Pressure-Gas-Atomizer.

  • PDF