• Title/Summary/Keyword: CuO-ZnO

Search Result 840, Processing Time 0.023 seconds

Studies on Growth Enviromental and Inorganic Components of Korean Native Tea Plants(Camellia sinensis O. kuntze) (한국(韓國) 자생차(自生茶)의 생육지 토양과 엽중 무기성분 함량)

  • Park, Jang-Hyun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • To characterize the growth environment, inorganic composition and morphological chracteristics of leaves of Korean tea plant, soil and tea leaf samples were collected from 15 locations and analyzed. The chemical characteristics of soils were in range of pH 4.09~6.15, OM 23.9~72.6g/kg, available phosphate less than 300mg/kg, K $0.8{\sim}2.5cmol^+/kg$, Na $tr{\sim}0.17cmol^+/kg$, Ca $1.0{\sim}6.2cmol^+/kg$, and Mg $0.3{\sim}2.1cmol^+/kg$. The contents of Ni. Cr, Zn. Cu, Pb, and Cd were at the level less than natural content in upland soil. Most of the sample soils were sandy loamy and loamy texture. The native tea plants were mainly grown in bamboo thicket or in forest. The leaf sizes of tea plants were $6.85{\pm}1.75{\times}2.6{\pm}0.5cm$, lateral vein number $14.2{\pm}2.7$, and crenated number $58.5{\pm}11.2$, and the leaf color was thin to dark green. The contents of $NH_4{^+}$, $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$ in tea leaves were in range of 30.5~47.7, 45.5~164.5, 16,998~25,431, 1.590~2,392 and 1,085~1,958mg/kg, respectively. The contents of $F^-$, $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$ and $SO_4{^{2-}}$ were in range of 21.2~63.2, 126.4~257.9, 108.5~185.9, 1,270~1.819, and $954{\sim}1,670mg/kg$, respectively. The leaf size of native tea plant grown widlly in Shunchun Changchun-ri, Hwasun Ssangbongsa, Kuryoi Chonunsa, Bosong Daewonsa and Namhae Boriam was as large as those of Yabukita. Japan cultiver, grown at Kangjin Jangwon tea field.

  • PDF

Crop Rotation in Paddy Soil Exhibiting Crop Failure Following Replanting: Effect on Soil Chemical Properties, Soil Microbial Community and Growth Characteristics of 2-Year-Old Ginseng (인삼 논재배 연작지에서 윤작물 재배가 토양화학성, 토양 미생물상 및 2년생 인삼의 생육에 미치는 영향)

  • Lee, Sung Woo;Park, Kyung Hoon;Lee, Seung Ho;Jang, In Bok;Jin, Mei Lan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.294-302
    • /
    • 2016
  • Background: Crop rotation plays an important role in improving soil chemical properties, minimizing the presence of disease pathogens, and assists in neutralizing autotoxic effects associated with allelochemicals. Methods and Results: Five rotation crops of sudan grass, soybean, peanut, sweet potato, and perilla were cultivated for one year with an aim to reduce yield losses caused by repeated cropping of ginseng. In 2-year-old ginseng grown in the same soil as a previous ginseng crop, stem length and leaf area were reduced by 30%, and root weight per plant was reduced by 56%. Crop rotation resulted in a significant decrease in electrical conductivity, $NO_3$, and $P_2O_5$ content of the soil, whereas organic matter, Ca, Mg, Fe, Cu, and Zn content remained-unchanged. Soil K content was increased following crop rotation with sudan grass and peanut only. Rotation with all alternate crops increased subsequent ginseng aerial plant biomass, whereas root weight per plant significantly increased following crop rotation with perilla only. A significant positive correlation was observed between root rot ration and soil K content, and a significant negative correlation was observed between ginseng root yield and the abundance of actinomycetes. Crop rotation affected the soil microbial community by increasing gram negative microbes, the ratio of aerobic microbes, and total microbial biomass whereas decreases were observed in actinomycetes and the ration of saturated fatty acids. Conclusions: In soil exhibiting crop failure following replanting, crop rotation for one year promoted both soil microbial activity and subsequent ginseng aerial plant biomass, but did not ameliorate the occurrence of root rot disease.

The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition (동합금 조성에 따른 북방전복 (Haliotis discus hannai)의 생존, 호흡 및 중금속 축적률)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Myeong, Jeong-In;Yang, Sung-Jin
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.353-361
    • /
    • 2014
  • In order to investigate the effects of copper alloy on abalone physiology, we studied survival rate, respiration, excretion rate, and heavy metal accumulation in each organ of adults and spats. The survival rate of spats and adults showed 27-60% and 63-83% respectively, higher survival rate in adults. In particular, 100% of copper panel led to lowest survival rate and there was no sharp distinction according to copper alloy composition. The respiration rate and excretion rate of ammonia nitrogen was $1.81mgO_2/g$ D.W./h and 0.43 mg $NH_4-N/g$ D.W./h respectively at 100% of copper panel. In other words, there was a high significant difference at the level, but no significant difference at other test levels (P < 0.05). The atomic ratio (0: N) hit the lowest at the 100% of copper panel showing 3.79 and no significant differences were seen among other test groups with 6.57-7.18 of a very low range. This means that the species might have undergone nutritional stress. In case of copper accumulation, the 100% copper panel group showed the highest level in hepatopancreas and muscle showing 6.91 mg/kg and 1.60 mg/kg respectively but the rest of groups showed similar levels. Zinc accumulation raised at Cu-Zn alloy panel had high significance showing 18.50 mg/kg and 1.10 mg/kg in hepatopancreas and muscle respectively (P < 0.05). To sum up, a cage net made of 100% pure copper is expected to have a negative effect on abalone in light of survival rate, heavy metal accumulation, and atomic ratio (0: N). Moreover, given that the substratum used for the high adhesive species and nutritious stress that is represented through the atomic ratio need to be considered, the copper alloy net is thought not to be suitable for abalone aquaculture.

Production of a Phospholipase C by Bacillus cereus and Its Characterization (Bacillus cereus에 의한 C형 인지질 분해효소의 생산과 특성 고찰)

  • 서국화;임용식;이종일
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.250-256
    • /
    • 2004
  • In this work we have cultivated several B. cereus strains in a complex LB medium in order to study the production of phospholipase C (PLC), and among them B. cereus 318 showed the highest productivity of PLC. Some components, i.e., 5 g/L glucose, 5 g/L yeast extract, 5 g/L peptone, 0.5∼1.0 g/L K$_2$HPO$_4$, 0.02∼0.04 g/L ZnSO$_4$$.$7H$_2$O and 3 g/L NaHCO$_3$ were found to be optimal for the high production of PLC by B. cereus 318. Optimal culture temperature and pH were found to be 30$^{\circ}C$ and pH 7.5 for the PLC production, respectively. Optimum reaction temperature and pH of the PLC produced by B. cereus 11 and 318 were 45$^{\circ}C$ and pH 4.0, while they were 50$^{\circ}C$ and pH 7.0 for the PLC by B. cereus 559. The PLC produced by B. cereus was activated by Mn$\^$2+/, Co$\^$2+/ and dimethyl sulfoxide (DMSO), but its activity was inhibited by Cu$\^$2+/ and partially by glycerol, isopropanol and sodium dodecyl sulfate (SDS).

A Study on Superoxide Dismutase from various Tissue of the Tricarboxylic acid cycle blocked Rat (Tricarboxylic acid회로를 차단한 흰쥐의 조직에서 Superoxide Dismutase에 관한 연구)

  • Kim, Yil
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 1985
  • This study was carried out to observe the formation of superoxide radicals and the changes in the activities of superoxide dismutase (EC.1.15.1.1.) from the various organs of a rat which was blocked tricarboxylic acid cycle. In order to block the tricarboxylic acid cycle, the beta-fluoroethylacetate was injected into peritoneal cavity of rat and removed the various tissues from the rat at internals of an hour. By tissue extracts being prepared by the method of Weigiger and Fridovich the activities of superoxide dismutase, aconitase, and contents of bliid glucose, citrates, and wuperoxide radicals were determined. The experimental results are summarized as follows: Accumulation of citrates if increased within three hours after treatment in the all tested tissues, especially, in the geart and spleen they are higher than one of other tissues as 12 and 20 times of control. The activities of aconitase are ingibited to 30-35% on an hour after beta-fluoroethylacetate treatment comparing with that of control rat. The content of blood glucose is increased to 1.6 fold of normal value after 5 hours of treatment. In all tested tissues, superoxide radicals are formed in the heart as 0.26 micromoles per gram tissue between one and three hours after treatment. The activities of total superoxide dismutase are increased between one and three hours after treatment in the all tested tissues and one of these enzymes in heart is highest. The activities of superoxide dismutase containing Mn are also increased with an increase of total superoxide dismutase activities.

  • PDF

The Present State of an Air Pollutants Inflow into Gyeongju and Effects on Stone Cultural Properties (경주권역으로의 대기오염물질 유입현황과 석조문화재에 미치는 영향)

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Choi, Won-Joon;Nam, Chul-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.349-359
    • /
    • 2005
  • In this study, we focused on the geographical and the meterological conditions, the atmospheric examination, the soil contents and compositions in order to establish cultural properties conservation plan in Gyeongju and its surroundings. Also, the transport route with environmental contaminants in Ulsan and Pohang was examined. The results could be summarized as follows ; Air pollutant and environmental contaminant was transported by two types of winds. One is induced by local winds, the other is induced by synoptic winds. Air contaminant transported from coastal regions to inland regions were associated with wind velocity. Gyeongju had good atmospheric conditions, i.e. $SO_2\;0.009{\sim}0.011ppm,\;CO\;0.6{\sim}0.8ppm,\;NO_2\;0.015{\sim}0.020ppm,\;O_3\;0.017{\sim}0.032ppm,\;PM_{10}\;46{\sim}62{\mu}g/m^3\;and\;Pb\;0.034{\sim}0.060{\mu}g/m^3$, which was below environmental air qualify standards and was little lower than those of Pohang and Ulsan. However, Ulsan and Pohang city are located on south-east coast and have many industrial facilities. Hence, air pollution problems become serious issues in Ulsan, Pohang, Busan, Daegu and other cities due to the emission of air pollutants from the various industrial facilities, incinerator and power plants, etc. The soil of Gyeongju had heavy metals conditions, i.e. $Cd\;0.01{\sim}0.08mg/kg,\;Cu\;N.D{\sim}2.39mg/kg,\;As\;N.D{\sim}0.07mg/kg,\;Hg\;N.D{\sim}0.15mg/kg,\;Pb\;0.49{\sim}1.39mg/kg,\;Cr^{+6}\;0.02{\sim}0.42mg/kg,\;Fe\;0.74{\sim}1.55mg/kg,\;Mn\;0.11{\sim}0.49mg/kg\;and\;Zn\;1.11{\sim}3.56mg/kg$. However, pH value of soil had range of $4.12{\sim}7.45$. The results showed that high pH concentration of soil could occur due to air pollution diffusion and environmental contaminant transport at Ulsan and Pohang city.

2, 4, 5-Trichlorophenoxyacetic Acid 분해균의 유전적 특성에 관한 연구

  • Yoon, So-Yeong;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.260-264
    • /
    • 1992
  • Pseudotnorju.c sp. EL-071P degrading 2.4.5-trichlorophe~~oxyi~cetaicci d (2.3.5-T) was resistantto antibiotics: rifampicin. ampicillin. kanamycin and metal ions : Zn" and Cu".The plasmitl related to the degradation of 2.4.5-'r and rifa~npicin resistance was isolatecifrom the strain. Its size was about 40 Kb. As result of transforming the plasmid intoEsch~rirhiti coli MClOhl, it was confirmed that the plasmid ura.; related to 2.4.5-T degradation.The strain coulil grow in the various chlorinated aromatic analogs as the solc carbon source.In the case of chlorophcnols. the chlorinated mono-substituteti phenols were easily dcgradetlin the order ol' ortho-. ~ ~ a r um- ,c ~tu-position.T he 2.3.5-T mctaholism was inhibited by 4-chlorophenol of 2.4.5-7' analog. In non-chlorinateci aromatics. ~ C I I L O ~ I ~ Csa.l icylilte i~ndtoluene were uscd ax the carbon source by the strain and typestrain Acudonlotrtr.\ plrtirltrKCTC 1643 having clegrad;~bility of various aromatics. But naphtalene was usecl only bythe A~urlomonri.\ sp. EL-07 1 P.the A~urlomonri.\ sp. EL-07 1 P.

  • PDF

Distribution of Organic Matters and Metallic Elements in the Surface Sediments of Masan Harbor, Korea (마산항 표층 퇴적물의 유기물 및 금속원소의 분포)

  • Hwang Dong-Woon;Jin Hyun-Gook;Kim Seong-Soo;Kim Jung-Dae;Park Jong-Soo;Kim Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.106-117
    • /
    • 2006
  • We measured the concentrations of organic matter and metallic elements (Al, Fe, Cr, Mn, Ni, Cu, Zn, As, Cd, Pb and Hg) in the surface sediments of Masan Harbor (in the southern sea, Korea) to evaluate the geochemical characters of sediment and the pollutions by organic matter and metallic elements. The mean grain size of the surface sediments in the study area ranged from $5.6{\phi}$ to $7.8{\phi}$, indicating silt sediment. The water content of the surface sediments exceeded 60% except at some stations. The contents of ignition loss (IL), total organic carbon (TOC) and total nitrogen (TN) ranged from 7.2-14.3%, 1.2-3.2%, and 0.10-0.28%, respectively. Based on the C/N ratios, the organic matter in the surface sediments of Masan Harbor may originate from terrigenous sources including fluvial inputs (mainly sewage in urban areas). The chemical oxygen demand (COD) and acid volatile sulfide (AVS) ranged from $11.3-29.9\;mgO_2/g\;dry$ and 0.20-4.47 mgS/g dry, respectively, and low concentrations were observed near a shipping route. In addition, the concentrations of metallic elements showed large spatial variations in Masan Harbor and the distributions of metallic elements were also comparable to those of organic matter. This implies that the distributions of organic matter and metallic elements in the surface sediments of Masan Harbor are mainly controlled by biogenic matter and artificial action (mainly dredging). In addition, we calculated the enrichment facto. (EF) and geoaccumulation index (Igeo) in order to evaluate pollution by metallic elements. The enrichment of metallic elements relative to Al was three to eighteen times higher at the study sites, compared to levels in the Earth's crust except for Fe, Ni and Mn. In addition, the Igeo class indicated that the surface sediments in the study area were moderately to strongly polluted in terms of metallic elements.

Transgenic Plants with Enhanced Tolerance to Environmental Stress by Metabolic Engineering of Antioxidative Mechanism in Chloroplasts (엽록체 항산화기구 대사조절에 의한 환경스트레스 내성 식물)

  • Kwon Suk-Yoon;Lee Young-Pyo;Lim Soon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.151-159
    • /
    • 2005
  • Injury caused by reactive oxygen species (ROS), known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stress. Chloroplasts are specially sensitive to damage by ROS because electrons that escape from the photosynthetic electron transfer system are able to react with relatively high concentration of $O_2$ in chloroplasts. To cope with oxidative stress, plants have evolved an efficient ROS-scavenging enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX), and low molecular weight antioxidants including ascorbate, glutathione and phenolic compounds. To maintain the productivity of plants under the stress condition, it is possible to fortify the antioxidative mechanisms in the chloroplasts by manipulating the antioxidation genes. A powerful gene expression system with an appropriate promoter is key requisite for excellent stress-tolerant plants. We developed a strong oxidative stress-inducible peroxidase (SWPA2) promoter from cultured cells of sweetpotato (Ipomoea batatas) as an industrial platform technology to develop transgenic plants with enhanced tolerance to environmental stress. Recently, in order to develop transgenic sweetpotato (tv. Yulmi) and potato (Solanum tuberosum L. cv. Atlantic and Superior) plants with enhanced tolerance to multiple stress, the genes of both CuZnSOD and APX were expressed in chloroplasts under the control of an SWPA2 promoter (referred to SSA plants). As expected, SSA sweetpotato and potato plants showed enhanced tolerance to methyl viologen-mediated oxidative stress. In addition, SSA plants showed enhanced tolerance to multiple stresses such as temperature stress, drought and sulphur dioxide. Our results strongly suggested that the rational manipulation of antioxidative mechanism in chloroplasts will be applicable to the development of all plant species with enhanced tolerance to multiple environmental stresses to contribute in solving the global food and environmental problems in the 21st century.

Inhibitory Substance Produced by Aspergillus sp. on the Snake Venom Proteinase - Isolation of Microorganism and Biological Activities of the Inhibitor - (Aspergillus 속 균주가 생성되는 사독 Proteinase에 대한 저해물질 - 균의 분리 및 저해물질의 생물학적 작용상 -)

  • Hyun, Nam-Joo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 1987
  • Aspergillus sp. (MK-24) producing a biological active substance that inhibited the venom proteinase activity was isolated from soil. The substance also inhibited the activity of trypsin and coagulation of blood, but did not inhibit papain, $\alpha$-chymotrypsin and pepsin. The substance was partially purified from culture filtrate by precipitaion with acetone, and by chromatography of DEAE-Sepadex A-50 column and Amberlite IRC-50 ion exchange. The inhibitory substance was stable in the wide pH range from 2.0 to 12.0 at 37$^{\circ}C$, but not stable at $65^{\circ}C$ in the alkaline pH. Only 12% of the activity was decreased by the heat treatment at 10$0^{\circ}C$ for two hours. The inhibition on venom proteinase (Agkistrodon bromohoffi brevicaudus) was a mixed type. The inhibitory activity depended on the preincubation time and completely depressed by cupric, zinc and cobalt ions. The inhibition on the venom proteinase was appeared strongly on casein but not on ovalbumin or hemoglobin as a substrate.

  • PDF