• 제목/요약/키워드: CuO-GDC

검색결과 5건 처리시간 0.017초

Fabrication of YSZ/GDC Bilayer Electrolyte Thin Film for Solid Oxide Fuel Cells

  • Yang, Seon-Ho;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.189-192
    • /
    • 2014
  • Yttria-stablized zirconia (YSZ) is the most commonly used electrolyte material, but the reduction in working temperature leads to insufficient ionic conductivity. Ceria based electrolytes (GDC) are more attractive in terms of conductivity at low temperature, but these materials are well known to be reducible at very low oxygen partial pressure. The reduction of electrolyte resistivity is necessary to overcome cell performance losses. So, thin YSZ/GDC bilayer technology seems suitable for decreasing the electrolyte resistance at lower operating temperatures. Bilayer electrolytes composed of a galdolinium-doped $CeO_2$ ($Ce_{0.9}Gd_{0.1}O_{1.95}$, GDC) layer and yttria-stabilized $ZrO_2$ (YSZ) layer with various thicknesses were deposited by RF sputtering and E-beam evaporation. The bilayer electrolytes were deposited between porous Ni-GDC anode and LSM cathode for anode-supported single cells. Thin film structure and surface morphology were investigated by X-ray diffraction (XRD), using $CuK{\alpha}$-radiation in the range of 2ce morphol$^{\circ}C$. The XRD patterns exhibit a well-formed cubic fluorite structure, and sharp lines of XRD peaks can be observed, which indicate a single solid solution. The morphology and size of the prepared particles were investigated by field-emission scanning electron microscopy (FE-SEM). The performance of the cells was evaluated over $500{\sim}800^{\circ}C$, using humidified hydrogen as fuel, and air as oxidant.

Ceria의 소결과 전기전도도에 미치는 첨가제의 영향 (Effect of Additives on the Densification and Electrical Properties of Ce0.8Gd0.2O2-δ Ceramics)

  • 유경빈;오은주;최경만
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.816-820
    • /
    • 2005
  • The doped-ceria is a strong candidate material for an intermediate temperature SOFC. However, the mechanical strength and the magnitude of electrical conductivity need to be increased at low sintering temperature. In this study, to improve both properties, $1at\% $ of Mg, Ca, Cr, Fe, Co, Ni, Cu, Ga, and Zr were added to the GDC20 ($20at\%$ Gd-doped Ceria) and sintered at $1350^{\circ}C$ that is $250^{\circ}C$ lower than $1600^{\circ}C$. With addition, the relative density of the sintered sample increased. Fe, Co, Ni, Cu, Ga doped-GDC20 showed high relative density over $92\%$. Among them, Ga doped-GDC20 showed the most improved sinterability. The conductivity of doped­GDC20 increased by $\~10$ times at $300\~700^{\circ}C$.

Effects of Reactive Air Brazing Parameters on the Interfacial Microstructure and Shear Strength of GDC-LSM/Crofer 22 APU Joints

  • Raju, Kati;Kim, Seyoung;Seong, Young-Hoon;Yoon, Dang-Hyok
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.394-398
    • /
    • 2019
  • In this paper, the joining characteristics of GDC-LSM ceramics with Crofer 22 APU metal alloys was investigated at different brazing temperatures and holding times by reactive air brazing. Brazing was performed using Ag-10 wt% CuO filler, at three different temperatures (1000, 1050, and 1100℃ for 30 minutes) as well as for three different holding times (10, 30, and 60 minutes at 1050℃). The interfacial microstructures were examined by scanning electron microscopy and the joining strengths were assessed by measuring shear strengths at room temperature. The results show that with increasing brazing temperature and holding time, joint microstructure changed obviously and shear strength was decreased. Shear strength varied from a maximum of 100±6 MPa to a minimum of 18±5 MPa, depending on the brazing conditions. These changes were attributed to an increase in the thickness of the oxide layer at the filler/metal alloy interface.

Efficacy of Ag-CuO Filler Tape for the Reactive Air Brazing of Ceramic-Metal Joints

  • Kim, Myung Dong;Wahid, Muhamad FR;Raju, Kati;Kim, Seyoung;Yu, Ji Haeng;Park, Chun Dong;Yoon, Dang-Hyok
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.492-497
    • /
    • 2018
  • This paper reports the efficacy of tape casting using an Ag-10 wt% CuO filler for the successful joining of a sintered $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}-La_{0.7}Sr_{0.3}MnO_{3{\pm}{\delta}}$ (GDC-LSM) ceramic with a SUS 460 FC metal alloy by reactive air brazing. The as-prepared green tape was highly flexible without drying cracks, and the handling was easy when used as a filler material for reactive air brazing. Heat treatment for the GDC-LSM/SUS 460 FC joint was performed at $1050^{\circ}C$ for 30 min in air. Microstructural observations indicated a reliable and compact joining. The room temperature mechanical shear strength of the as-brazed joints was $60{\pm}8MPa$ with a cohesive failure. The flexural strength of joints was measured from room temperature up to $850^{\circ}C$, where the strength retention revealed to be almost 100% at $500^{\circ}C$. However, the joints showed a degradation in strengths at 800 and $850^{\circ}C$, exhibiting strength retentions of 57% and 37%, respectively.