• Title/Summary/Keyword: CuO/ZnO

Search Result 840, Processing Time 0.023 seconds

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Physico-Chemical Properties of Soils at Red Pepper, Garlic and Onion Cultivation Areas in Korea (우리나라 고추, 마늘 및 양파 주산지 밭토양의 물리·화학적 특성)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Kang, Jong-Gu;Cho, Ja-Yong;Kim, Kil-Yong;Kim, Hyun-Woo;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.123-131
    • /
    • 1999
  • To get the basic information for the improvement of the optimum levels of upland soil fertility and fertilizer application, the soil samples in two hundred fifteen site were collected from the major condiment vegetable cultivation areas such as red pepper, garlic and onion fields. Physico-chemical properties of the soil samples were investigated. Soil texture distribution of soil samples in red pepper, garlic and onion cultivation areas was in order of loam (L), sandy loam (SL), silt loam (SiL) and clay loam (CL) (35.4, 31.6, 14.9 and 7.0%, respectively). The average pH of soil in garlic and onion cultivation areas were over pH 6.0, whereas in red pepper was under pH 5.5. The frequency distribution of soil pH in total sampling sites were 58.7% in under pH 6.0 and 21.4% in below pH 5.0, in contrast to 10.3% in over pH 7.0. The organic matter contents were in the range of $20{\sim}30g\;kg^{-1}$, and the onion field soils was a little higher than those in red pepper or garlic. The available phosphate contents were in the range of $719{\sim}746mg\;kg^{-1}$ and were not different among in red pepper, garlic and onion. The frequency distribution of available phosphate in total sampling sites were found 62.8% of above $600mg\;kg^{-1}$, which was over the standard level for upland soil improvement, and then 22.3% was exceeded $1,000mg\;kg^{-1}$, especially. In the exchangeable cations, the K and Ca contents in garlic (1.27 and $9.11cmol\;kg^{-1}$) and onion (1.20 and $8.39cmol\;kg^{-1}$) were higher than in red pepper (0.96 and $5.87cmol\;kg^{-1}$), respectively. The Mg contents in garlic field soils ($2.17cmol\;kg^{-1}$) were higher than those in red pepper and onion (1.51 and $1.80cmol\;kg^{-1}$). This exchangeable K, Ca and Mg contents were higher than the standard level for upland soil improvement. The contents of microelement were ranged in $54.3{\sim}60.1mg\;kg^{-1}$ for Fe, $31.3{\sim}42.3mg\;kg^{-1}$ for Mn, $1.7{\sim}2.3mg\;kg^{-1}$ for Cu and $4.8{\sim}5.5mg\;kg^{-1}$ for Zn, respectively.

  • PDF

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

Liquid-Composting Conditions of By-product Obtained from Degradation of Animal Carcass for Agriculture Recycling (폐가축사체의 농업적 재활용을 위한 가축사체 액상부산물의 액비화 조건 구명)

  • Seo, Young-Jin;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Park, Ju-Wang;Choi, Ik-Won;Sung, Hwan-Hoo;Kang, Seog-Jin;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.348-354
    • /
    • 2013
  • BACKGROUND: Globally, concern about emerging infectious diseases of livestock is growing. For the disposal of the animal carcass, it is necessary to recycle the carcass into an agriculturally usable product. The objective of this study was to investigate the composting conditions of liquid by-product obtained from degradation of animal carcass. METHODS AND RESULTS: Optimum conditions of liquid fertilizer were investigated using different microorganisms, pHs, and volumes of microorganisms (Lactobacillus rhamnosus+Pichia deserticola). Based on the results from the optimum conditions, compost maturity and quality of liquid fertilizer were evaluated for 112 days. The compost maturity of liquid fertilizer were higher in the order of LP(Lactobacillus rhamnosus + Pichia deserticola) > BC(Bacillus cereus) > BS(Bacillus subtilis). The optimum condition under different volumes of LP was injection of 0.5 mL/100 mL. The compost maturity under different pHs were higher in the order of pH 7 > $$5{\geq_-}9{\frac{._-}{.}}11$$. The liquid by-product at 56 days after composting was completely decomposed. The concentrations of T-N, T-P and $K_2O$ in liquid fertilizer at 56 days were 0.94, 0.17 and 3.78%, respectively, and the sum of those concentrations was 4.89%. CONCLUSION(S): Liquid fertilizer of by-product using pig carcass was decomposed with optimum conditions(LP, pH 7, injection of 0.5 mL/100 mL) in 56 days after composting, and was suitable for official standard of commercial fertilizer.

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF

Protective Effects of Sea Buckthorn (Hippophae rhamnoides L.) Leaves Fermented with Hericium erinaceum Mycelium against Oxidative Modification of Biological Macromolecules and Cell Death (노루궁뎅이 버섯균사체를 이용한 비타민나무 발효물이 생체고분자의 산화적 변형과 세포사멸에 미치는 보호 영향)

  • Kim, Seung-Sub;Kyeong, Inn-Goo;Lee, Mi-La;Kim, Dong-Goo;Shin, Ji-Young;Yang, Jin-Yi;Lee, Gwang-Ho;Eum, Won-Sik;Kang, Jung-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • In this study, hot water extract from sea buckthorn (Hippophae rhamnoides L.) leaves fermented with Hericium erinaceum mycelium (SBT-HE) was assessed for protection against oxidative modification of biological macromolecules and cell death. Antioxidant activity of SBT-HE was evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, and peroxyl radical scavenging assays. SBT-HE showed 65.06% DPPH radical scavenging activity at $500{\mu}g/mL$, 98.83% ABTS radical scavenging activity at $50{\mu}g/mL$, and 44.03% peroxyl radical scavenging activity at $100{\mu}g/mL$. SBT-HE significantly inhibited DNA strand breakage induced by peroxyl radical. SBT-HE also prevented peroxyl radical-mediated human serum albumin modification. SBT-HE effectively inhibited $H_2O_2$-induced cell death and significantly increased cell survival by 21.59% at $100{\mu}g/mL$. SBT-HE also reduced intracellular reactive oxygen species levels in $H_2O_2$-treated cells. The results suggest that SBT-HE can contribute to antioxidant activity and protect cells from oxidative stress-induced cell injury.

Changes in Chemical Properties of Paddy Field Soils as Influenced by Regional Topography in Jeonbuk Province (지형특성에 따른 전북지역 논토양 화학성 변화)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Kim, Kab-Cheol;Kim, Hyung-Gook;Jeong, Seong-Soo;Jeon, Hye-Won;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.393-398
    • /
    • 2012
  • We investigated the changes in chemical properties of paddy field soils at 300 different sampling sites containing 4 topography in Jeonbuk province, Korea. The soil samples were collected 43.0% from local valley and fans, 39.3% from fluvio-marine deposits, 15.0% from alluvial plains, and 2.7% from diluvium sites. The optimal values of soil properties in the total soil samples were as follows: 65.3% of total samples in soil pH value, 48.3% of total samples in cation exchange capacity (CEC) value, and 22.3% of total samples in available phosphorus content, whereas the deficient values of soil properties were 63.3% of total samples in soil organic matter (SOM) content, 75.7% of total samples in available silicate content, and 61.3%, 51.0%, and 59.3% of total samples in exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ concentrations, respectively. There were different soil types in the paddy fields: that is, 34.4% immature paddy and 33.6% sandy paddy in the local valley and fans, 57.8% sandy paddy in the alluvial plains, 47.4% normal paddy in the fluvio-marine deposits, and 75.7% immature paddy in the diluvium. Soil textures were also different: 53.5% loam in the local valley and fans, 37.8% sandy loam in the alluvial plains, and 55.1% silty loam in the fluvio-marine deposits. Soil pH and SOM contents were not different among the different topographical sampling sites. However, the mean value of available phosphorus content, 224 mg $kg^{-1}$, was exceeded optimal values in the diluvium. The contents of exchangeable cations were optimal in all the sites, except exchangeable $Ca^{2+}$ contents in the local valley and fans. The contents of available silicate ranged between 112 and 127 mg $kg^{-1}$ in all the sites, which were lower than optimal value. In addition, soil pH values were proportionally correlated to the order of available silicate, exchangeable $Ca^{2+}$, $Mg^{2+}$, $Na^+$, CEC, and exchangeable $K^+$. The contents of SOM were proportionally correlated to the order of CEC, available $P_2O_5$, exchangeable $Ca^{2+}$, and available silicate. The contents of heavy metals, Cd, Cr, Cu, Ni, Pb, and Zn, were only 10% of the threshold levels of the metals, and As content was about 20 to 30% of the threshold level.

A Study on the Influence of Water Quality on the Phosphorus Fraction Properties from Reservoir Sediments (저수지 퇴적물로부터 인의 존재형태가 수질에 미치는 영향에 대한 연구)

  • Lee, Jin-Kyung;Ahn, Tae-Woong;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.840-850
    • /
    • 2010
  • The present study was attempted to find the effects of structural properties of phosphorus on the water quality of Gyehwa reservoir in Saemangeum. Relationship of phosphorus fractions between water and sediment properties was closely examined, and a few types of phosphorus were found from the sample sediment as : Saloid-P, Al-P, Fe-P, Ca-P, Red-P and Occd-P. Saloid-P (1.4%), Al-P (0.5%), Fe-P (39.8%), Ca-P (56.6%), Red-P (0.4%), Occd-P (1.3%) were extracted in a mass basis from the sediment of Gyehwa reservoir. Approximately more than 97% of phosphorus were calcium related phosphorus (Ca-P, 56%) and iron bound phosphorus (Fe-P, 39.8%). The Fe-P closely relates with water quality of T-N (r=0.761, p<0.05), $NO_3$-N (r=0.754, p<0.05), $NH_4$-N (r=0.728, p<0.05), T-P (r=0.774, p<0.05) and $PO_4$-P (r=0.767, p<0.05) while the Ca-P did not show any consistent dependency on the water quality. On the other hand, the correlation of Ca-P with $P_2O_5$ was high with r=0.783 (p<0.05) in the sediment. The Fe-P was affected significantly on the Ignition Loss (r=0.569, p<0.05), T-N (r=0.715, p<0.05) and T-P (r=0.983, p<0.01). In the research of correlation between phosphorus fraction and heavy metals in the sediment, Ca-P did not show any specific relationships with heavy metals. The Fe-P showed a significant correlation with As (r=0.817, p<0.01), Cu (r=0.793, p<0.05), Cd (r=0.786, p<0.05), Zn (r=0.738, p<0.05), so that it can be stated that the presence of Fe-P may implicate the volume of various metallic elements.

Risk Analysis for the Harvesting Stage of Tomato Farms to Establish the Good Agriculture Practices(GAP) (GAP 모델 확립을 위한 토마토 농장 수확단계의 위해요소 조사 및 분석)

  • Lee, Chae-Won;Lee, Chi-Yeop;Heo, Rok-Won;Kim, Kyeong-Yeol;Shim, Won-Bo;Shim, Sang-In;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.141-153
    • /
    • 2012
  • Samples collected from six tomato farms(A, B, C : soil culture, D, E, F : Nutriculture) located in Gyeongsangnam-do were tested for the analyses of biological(sanitary indications, major foodborne pathogens, fungi), chemical(heavy metals, pesticides) and physical hazards. The highest levels of total bacteria(7.5 log CFU/g) and coliforms(5.0 log CFU/g) in soil culture farms were higher than those of nutriculture farms(total bacteria: 2.5 log CFU/mL, coliforms: 0.6 log CFU/mL). In crops and personal hygiene soil culture farms showed a slightly higher contamination levels. From all farms, the levels of fungi in soil farms were higher than those of nutrient solution. In case of major pathogens, Bacillus cereus and Staphylococcus aureus were detected in all sample with the exception of nutrient solution. Meantime, Escherichia coli, Listeria monocytogenes, E.coli O157 and Salmonella spp. were not detected. For airborne bacteria, soilculture farms showed less contamination than nutriculture farms. A piece of glass and can was confirmed asphysical hazards. Heavy metal(Cd, Pb, Cu, Cr, Hg, Zn, Ni and As) and pesticide residues as chemical hazards were detected, but their levels were lower than the regulation limit. These results demonstrate that potential hazards on harvesting stage of tomato fam were exposed. Therefore, proper management is needed to prevent biological hazards due to cross-contamination, while physical and chemical hazards were in appropriate levels based on GAP criteria.