• Title/Summary/Keyword: CuNi nanoparticle

Search Result 15, Processing Time 0.026 seconds

Magnetic Properties of Nano-Sized CuNi Clusters

  • Jo, Y.;Jung, M.H.;Kyum, M.C.;Park, K.H.;Kim, Y.N.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.156-159
    • /
    • 2006
  • We have studied the magnetic properties of the CuNi nanoparticles for three different sizes prepared by plasma and chemical techniques. The magnetization is enormously enhanced with decreasing the nanoparticle size. This enhanced magnetic moment shows almost inversely linear temperature dependence, which could be interpreted by the Langevin-type superparamagnetism. The field dependence exhibits ferromagnetic-like behavior with weak hysteresis, which could described in terms of uncompensated spin and/or surface anisotropy. In addition, the magnetic data suggest that the CuNi nanoparticles produced by the plasma method result in significantly less oxidized metallic nanoparticles than those prepared by other techniques.

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints (Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구)

  • Kim, Byungwoo;Choi, Hyeokgi;Jeon, Hyewon;Lee, Doyeong;Sohn, Yoonchul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Sn-58Bi-xRu composite solders were prepared by adding Ru nanoparticles to Sn-58Bi, a typical low-temperature solder, and the interfacial reaction and solder joint reliability were analyzed by reacting with Cu/OSP and ENIG surface treated PCB boards. The Cu6Sn5 IMC formed by the reaction with Cu/OSP had little change in thickness depending on the Ru content, and ductile fracture occurred inside the solder during the high-speed shear test without any significant change even after 100 hr aging. In reaction with ENIG, the Ni3Sn4 IMC thickness tended to decrease as the Ru content increased, and ENIG-specific brittle fracture was found in some specimens. Since Ru element is not found near the interface, it is judged not to be significantly involved in the interfacial reaction, and it is analyzed that it mainly exists together with the Bi phase.

Bioassessment of Nanoparticle Toxicity based on Seed Germination and Germination Index of Various Seeds (다양한 씨앗의 발아 및 발아지수에 근거한 나노입자 생물학적 독성평가)

  • Gu, Bon Woo;Lee, Min Kyeung;Shi, Yu Tao;Kong, In Chul
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This study investigated the effects of six metal oxide nanoparticles (NPs: CuO, NiO, TiO2, Fe2O3, Co3O4, ZnO) on seed germination and germination index (G.I) for five types of seeds: Brassica napus L., Malva verticillata L., Brassica olercea L., Brassica campestris L., Daucus carota L. NPs of CuO, ZnO, NiO show significant toxicity impacts on seed activities [CuO (6-27 mg/L), ZnO (16-86 mg/L), NiO (48-112 mg/L)], while no significant effects were observed at > 1000 mg/L of TiO2, Fe2O3, Co3O4. Tested five types of seed showed different sensitivities on seed germination and root activity, especially on NPs of CuO, ZnO, NiO. Malva verticillata L. seed was highly sensitive to toxic metal oxide NPs and showed following EC50s : CuO 5.5 mg/L, ZnO 16.4 mg/L, NiO 53.4 mg/L. Mostly following order of toxicity was observed, CuO > ZnO > NiO > Fe2O3 ≈ Co3O4 ≈ TiO2, where slightly different toxicity order was observed for carrot, showing CuO > NiO ≈ ZnO > Fe2O3 ≈ Co3O4 ≈ TiO2.

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Toxicity Assessment of Nanopariticles Based on Seed Germination and Germination Index (씨앗발아 및 발아지수에 근거한 나노입자 독성평가)

  • Gu, Bonwoo;Kong, In Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.396-401
    • /
    • 2014
  • Nanomaterials have been widely used in many fields. This study investigates the effects of metal oxide nanoparticles (CuO, NiO, $TiO_2$, $Fe_2O_3$, $Co_3O_4$, ZnO) on germination and germination index (G.I.) of seeds, Lactuca and Raphanus. Under aqueous exposure, CuO on Lactuca shows the most significant impacts on activities compared to others, showing $EC_{50s}$ for germination and G.I. as 0.46 mg/L and 0.37%, respectively. The effects of nanoparticle phytotoxicity on seed Lactuca was much higher than that of Raphanus. In general, the toxicities on seed germination and germination index were as following orders : CuO > ZnO > NiO ${\gg}$ $TiO_2$, $Fe_2O_3$, $Co_3O_4$. No measurable inhibition was observed at 1,000 mg/L (maximum exposure concentration) of $TiO_2$, $Fe_2O_3$, $Co_3O_4$.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

Toxicity Evaluation of Metals and Metal-oxide Nanoparticles based on the Absorbance, Chlorophyll Content, and Cell Count of Chlorella vulgaris (Chlorella vulgaris의 흡광도, 클로로필 및 개체수 통합 영향에 근거한 중금속 및 나노입자 독성 조사)

  • Jang, Hyun Jin;Lee, Mun Hee;Lee, Eun Jin;Yang, Xin;Kong, In Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, toxicities of seven metals (Cu, Cd, Cr, As(III), As(V), Zn, Ni) and five metal oxide nanoparticles (NPs: CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$) were evaluated based on the growth of Chlorella vulgaris. Effect on algae growth was evaluated by integrating the results of absorption, chlorophyll content, and cell count. The toxicity rankings of metals was observed as Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$). Slightly different orders and sensitivities of metal toxicity were examined depending on endpoints of algal growth. In case of NPs, regardless of endpoints, similar toxicity rankings of NPs ($TEC_{50}$) were observed, showing ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$). These results indicate that an integrating results of endpoints might be an effective strategy for the assessment of contaminants.

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo;Eu, Young-Jae;Kim, Kun Woo;Hu, XingHao;Sinha, Brajalal;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.