• 제목/요약/키워드: CuNi

검색결과 2,488건 처리시간 0.038초

Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

  • Rittapai, Apiwat;Urapepon, Somchai;Kajornchaiyakul, Julathep;Harniratisai, Choltacha
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.215-223
    • /
    • 2014
  • PURPOSE. This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (${\alpha}$=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS. The solidus and liquidus points of experimental alloys ranged from $1023^{\circ}C$ to $1113^{\circ}C$ and increased as the nickel content increased. The highest ultimate tensile strength ($595.9{\pm}14.2$ MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity ($113.9{\pm}8.0$ and $122.8{\pm}11.3$ GPa, respectively), but also had a value of 0.2% proof strength ($190.8{\pm}4.8$ and $198.2{\pm}3.4$ MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

W-M(M=Cu, Sn, Ni)계 고밀도 복합재료 제조에 관한 기초연구(I) (A Basic Study on the Fabrication of W-M(M=Cu, Sn, Ni) System High Density Composite (I))

  • 장탁순;홍준희;이태행;구자명;송창빈
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.268-274
    • /
    • 2009
  • For the purpose of obtaining basic information on the development of lead-free materials, a high density composites (a) W-Cu, (b) W-Sn (c)W-Cu-Sn and (d) W-Cu-Ni were fabricated by the P/M method. The particle size of used metal powders were under 325 mesh, inner size of compaction mould was $\phi8$ mm, and compaction pressure was 400 MPa. A High density composite samples were sintered at a temperature between $140^{\circ}C$ and $1050^{\circ}C$ for 1 hour under Ar atmosphere. The microstructure, phase transformation and physical properties of the sintered samples were investigated. As the results, the highest relative density of 95.86% (10.87 g/$cm^3$) was obtained particularly in the sintered W-Cu-Sn ternary system sample sintered at 450 for 1hr. And, Rockwell hardness (HRB) of 70.0 was obtained in this system.

Cu계 스피넬 페라이트의 Cu 함량에 따른 특성 변화 (Properties of Cu-Contained Spinel Ferrites with Various Cu Contents)

  • 남중희;오재희
    • 한국세라믹학회지
    • /
    • 제33권11호
    • /
    • pp.1245-1252
    • /
    • 1996
  • The charcteristics for the copper-contained spinel ferrites such as NiCu-and ZnCu ferrites with various copper content are investigated in this study which can provide a explanation for the behavior of copper in sintering at a low temperatuer. The bulk density and the grain size for these sintered ferrites were increased with the larger amount of copper in compositions. In microstructure of copper-contained spinel ferrites copper exists in the grain boundary which is sintering process. Electrical resistivity and frequency range with maximum Q-facor of NiCu-or ZnCu ferrites were decreased as increasing of copper content in ferrite composition.

  • PDF

Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향 (Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer)

  • 장희석;박상환;권혁보;최성철
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

CH4로 환원된 페라이트를 이용한 CO2 분해 (Decomposition of CO2 with Reduced ferrite by CH4)

  • 신현창;정광덕;주오심;한성환;김종원;최승철
    • 한국세라믹학회지
    • /
    • 제39권7호
    • /
    • pp.657-662
    • /
    • 2002
  • 페라이트를 이용한 $CO_2$분해 반응에서 부분 산화로 CO와 $H_2$의 제조가 가능한 C $H_4$를 사용하여 CuF $e_2$ $O_4$와 NiF $e_2$ $O_4$를 환원시킨 후, 환원된 페라이트를 이용하여 $CO_2$분해 반응 연구를 진행하였다. C $H_4$와 페라이트의 환원 반응에서, $700^{\circ}C$부터 $H_2$와 CO가 생성되었으며, 80$0^{\circ}C$까지의 반응에서 페라이트는 산소부족형 철산화물(Fe $O_{1-{\delta}}$(0$\leq$$\delta$$\leq$1))과 금속 Cu와 Ni의 혼합물 상태로 환원되었다. 환원된 페라이트를 이용한 $CO_2$분해 반응에서, 환원된 CuF $e_2$ $O_4$와 NiF $e_2$ $O_4$보다 높은 반응성을 나타내면서 더 많은 양의 $CO_2$를 분해하였다 이 반응에서 $CO_2$분해는 산소부족형 철산화물의 산화에 의해서만 일어났고, 치환된 2가 양이온은 산화되지 않은 금속 상태로 존재하였다. 이와 같은 결과를 통하여 C $H_4$를 이용하여 페라이트를 환원시킨 후, $CO_2$를 분해하는 공정은 $H_2$와 CO 같은 유용한 가스 제조는 물론 이를 이용하여 $CO_2$도 분해할 수 있는 활용가치가 매우 높은 공정으로 평가된다.