• Title/Summary/Keyword: CuAg

Search Result 1,191, Processing Time 0.03 seconds

Study on the Adsorption of Heavy Metal Ions by Biomaterials (생물질재료에 의한 중금속 흡착에 관한 연구)

  • 정석희;김상규;이민규
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.357-365
    • /
    • 1993
  • This study was conducted for the efficient utilization of biomaterials such as starch residue, tangerine skin, and green tea residue, which are agricultral by-products discarded in Cheju Province annually, as adsorbents and biomaterials were examined for their removal ability of heavy metal ions in waste water by batch adsorption experiments. The removal efficiency of biomaterials for heavy metal ions was above 80-90% and almost similar to activated carbon and the adsorption ability of those treated with 포르말린 was improved in the green tea residue only for $Pb^{2+}$, $Cu^{2+}$, and $Zn^{2+}$. In the conditions of pH, the removal efficiency of heavy metal ions was high in the range of 5-7. In the solutions which heavy metal ions were mixed, the removal efficiency was similar at $Ag^+$, $Pb^{+2}$ and reduced to about 10% at the other ions, as compared with the solutions they were not mixed. Adsorption isotherm of biomaterials was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, 1/n were obtained in the range of 0.1-0.5.

  • PDF

Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication (자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용)

  • Sung, In-Ha;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF

Surface Treatment of Dielectric Ceramic Resonator for High Frequency Devices (고주파용 유전체 세라믹 공진기의 표면처리)

  • Park, Hae-Duck;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.923-928
    • /
    • 2001
  • An electrolytic silver plating process has been successfully developed for terminated electrode parts of dielectric ceramic resonator. High adhesion strength and high Qu is obtained and blister occurance is minimized under plating condition with $HNO_3$750 $m\ell/\ell$ and HF $ 250m\ell/\ell$ solution at $25^{\circ}C$ for 20 minutes. Adhesion strength has the highest value, 3.2 kg/mm$^2$ at etching temperature of $25^{\circ}C$. Adhesion strength, Qu and blister occurance are monotonically increased with the thickness of electrodeposition layer. In case of electrodeposition of Ag, Qu value of 380 has obtained higher than in case of electrolytic Cu plating with Qu value of 325. Therefore, terminated electrode parts of dielectric ceramic resonator reducing dielectric loss can be obtained using prensent process.

  • PDF

Calculations of Surface Stresses in Metals Under Mechanical Strains (기계적 변형하에서 금속재료의 표면응력 계산)

  • Kim, Sung-Youb;Earmme, Youn-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.250-257
    • /
    • 2008
  • We calculate the variation of the surface stresses according to uniaxial and biaxial strains in face-centered cubic (FCC) metals. In our study, three mainly observed free surfaces of seven representative FCC metals are considered. Employed method is molecular mechanics, in which the interaction of atoms is described by empirical interatomic potentials. As uniaxial strain increases to tensile direction, the surface stresses on {100} and {110} free surfaces decrease monotonously, while those on {111} surface increase. These tendencies are the same regardless of the species of metals and interatomic potentials employed. However, when the system is under biaxial strain, surface stresses change different according to the surface directions, the species of metals, and even interatomic potentials. On {100} and {111} surfaces, heavy metals (Pt, Au) show the opposite variation to light metals (Ni, Cu). In the cases of Pd and Ag, the surface stresses reveal the opposite tendency, depending on interatomic potentials used.

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Partial Purification and Characterization of Thermostable Alkaline $\beta$-Mannanase from Bacillus sp. JB-99 Suitable for Pulp Bleaching

  • VIRUPAKSHI S.;BABU K. GlREESH;NAIK GAJANAN R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.689-693
    • /
    • 2005
  • Bacillus sp. JB-99, when grown in a chemically defined medium containing lactose as a carbon source, yielded 3,860 U/ml extracellular $\beta$-mannanase, which was high compared to other examined carbon sources. Among the nitrogen sources, yeast extract enhanced the enzyme activity. The enzyme production was growth-associated. The enzyme was optimally active at $65^{\circ}C$, pH 10, and had a half-life of 190 min at $65^{\circ}C$. N-Bromosuccinamide and $AgNO_3,\;CuSO_4$, and $HgCl_2$ strongly inhibited the enzyme, whereas $Ca^{2+}$ stimulated the enzyme activity. The $\alpha$-galactosidase enzyme production was not found in any of the enzyme assays.

Studies on the Constituents of the Chicory Root (치코리뿌리 성분(成分)에 관(關)한 연구(硏究))

  • Kim, Taik-Young;Yoon, Young-Jin;Lee, Kyung-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.258-262
    • /
    • 1978
  • Proximate composition, minerals and fatty acid in dried chicory root (moisture content 7.0%) are analyzed and subsequent results are as follows: Crude protein, crude fat, crude fiber, total sugar and ash content in chicory root are 8.6%, 1.6 %, 6.9%, 58.5% and 4.2%, respectively. Mineral content of Ca, P, Fe, Mg and Si in the root are 1,560, 180, 10,600 and 180 mg%, respectively. Other minerals such as K, Na, Al, Zn, Ag, Cu and Ti are also determined. Unsaturated fatty acid content in total fat of the root is 65.4%, Particularly high in linoleic acid. Uridine-5'-diphospho-glucose, as sole nucleotide-sugar in the root, was detected.

  • PDF

A study on plating conditions and characteristics of Sn layers as inserted metals for electronic component (전자부품의 접합재료로서의 Sn도금막 형성 조건 및 도금막의 특성에 관한 연구)

  • ;;;Shuji Nakata
    • Electrical & Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.505-513
    • /
    • 1993
  • 본 논문은 전자 부품의 Soldring기에 사용되는 접합제를 Flux를 포함한 Solder paste 대신에 도금막을 이용하기 위한 Sn 도금막 형성 프로세스를 검토한 것이다. 반도체 Device를 Packaging한 외부단자(lead frame)과 HIC상의 후막전극(Ag/Pd)과의 접합 및 PCB상의 Cu land와의 접합시에는 스크린 프린트에 의한 Solder Paste가 일반적으로 사용되고 있다. 본 논문은 Fluxless Soldering의 한수단으로 도금막을 lead상에 형성시켜 접합 재료로서의 형성 프로세스 및 도금막의 특성과 도금형성 Paramete와의 관련성을 실험적으로 검토한 것으로 전류밀도 200 A/m$^{2}$의 조건으로 형성한 Sn 도금막이 접합용으로 최적조건임을 밝혔다.

  • PDF

A Study on Reliability of Solder Joint in Different Electronic Materials (이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구)

  • 신영의;김경섭;김형호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

Ni계/Ag계 금속필러와 c-BN의 브레이징 접합부에서 Ti의 영향

  • Lee, Jang-Hun;Lee, Yeong-Seop;Im, Cheol-Ho;Lee, Ji-Hwan;Song, Min-Seok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.196-198
    • /
    • 2006
  • 이 연구는 CBN을 건전한 브레이징을 하기 위해서, CBN과 금속필러메탈 접합계면에서의 금속성분과 산화물, 탄화물의 거동을 분석하는데 있다. 진공 인덕션 브레이징으로 온도는 $950{\sim}1100^{\circ}C$에서 브레이징 유지시간은 $5{\sim}30$분로 실시하였다. 금속필러로는 Ni-7Cr-3Fe-3B-4Si(wt.%)와 Ag-25Cu-5Ti(wt.%)을 사용하여 브레이징된 CBN은 $950{\sim}1000$도, 유지시간 10분 사이에서 각각 건전한 계면과 표면을 얻을 수 있었으며, 계면에서 Ti-rich상과 화합물이 확인되었다. 이상의 결과로 부터 화합물의 생성과 건전한 접합공정은 브레이징 온도와 시간이 좌우하며, N과 B, Ti의 함유량이 CBN의 브레이징 접합 특성의 중요변수로 생각되어진다. CBN과 Ni계/Ag계 브레이징 필러의 계면에서의 미세조직 및 화학반응의 메커니즘은 SEM, EPMA, XRD를 이용하여 분석하였다.

  • PDF