• 제목/요약/키워드: CuAg

Search Result 1,191, Processing Time 0.029 seconds

Effect of sintering atmosphere on the Crystal structure of lead-free Piezoelectric Ceramics (무연계 압전세라믹스의 결정구조에 대한 소결분위기의 영향)

  • Kang, Kyung-Min;Chun, Myuong-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Ko, Tae-Gyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.328-328
    • /
    • 2010
  • 압전 세라믹스는 엑츄에이터 및 센서 등의 다양한 응용분야로 인하여 많은 연구가 진행되어왔다. 최근 친환경 무연 압전계인 Bi층상구조 (BNT) 및 알칼리 니오븀산화물계 (KNN)에 대한 연구가 집중되고 있다. 한편, 소형화 및 고성능의 압전소자에 대한 요구 증가로 고가의 내부전극인 Ag, Ag-Pd합금으로 이루어진 적층압전소자에 대한 연구개발이 진행되어 왔다. 본 연구에서는 Ni이나 Cu를 내부전극으로 사용하는 적층압전소자의 개발가능성을 타진하고자 Ni의 산화를 억제할 수 있는 환원분위기 소결시에 압전소재의 상변화 및 내환원성 정도를 조사하였다. 압전소재인 BNT 및 KNN를 공기중에서 합성한 후, 환원분위기의 영향을 조사하고자 샘플을 디스크 형태로 성형하여 $1000{\sim}1200^{\circ}C$에서 2 시간 동안 공기, 중성 (N2) 와 환원 분위기 (3 % H2 - 97 %의 N2) 에서 소결한 후 미세구조와 전기적 특성을 SEM, EDS, XRD, impedance analyzer로 조사였다. 환원분위기에서 소결된 BNT 샘플은 페롭스카이트 상이 관찰되지 않았으며, SEM/EDS 분석결과 시편의 표면에 Bi의 석출이 관찰되었다. KNN의 경우에는 공기중에서 소결 시편뿐만 아니라 환원분위기에서 소결된 시편에서도 페롭스카이트 구조를 보였으며, EDS분석결과 K 및 Na의 휘발이 비교적 적었다.

  • PDF

Environmental contamination and geochemical behaviour of heavy metals around the abandoned Songcheon Au-Ag mine, Korea

  • Lim Hye-sook;Lee Jin-Soo;Chon Hyo-Teak;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.544-547
    • /
    • 2003
  • The objective of this study is to investigate the contamination levels and dispersion patterns of arsenic and heavy metals and to estimate the bioaccessible fraction of the metals in soil and plant samples in the vicinity of the abandoned Songcheon Au-Ag mine. Tailings, soils, plants (Chinese cabbage, red pepper, soybean, radish, sesame leaves, green onion, lettuce, potato leaves, angelica and groundsel) and waters were collected around the mine site. After appropriate preparation, all samples were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of As and heavy metals were found in tailings. Mean concentrations of As in agricultural soils were higher than the permissible level. Especially, maximum level of As in farmland soil was 513 mg/kg. The highest concentrations of As and Zn were found in Chinese cabbage (6.7 mg/kg and 359 mg/kg, respectively). Concentrations of As, Cd, and Zn in most stream waters which are used for drinking water around this mine area were higher than the permissible levels regulated in Korea. Maximum levels of As, Cd and Zn in stream waters were 0.78 mg/L, 0.19 mg/L and 5.4 mg/L, respectively. These results indicate that mine tailings can be the main contamination sources of As and heavy metals in the soil-water system in the mine area. The average of estimated bioaccessible fraction of As in farmland soils were $3.7\%$ (in simulated stomach) and $10.8\%$ (in simulated small intestine). The highest value of bioaccessible fraction of metal in farmland soils was $46.5\%$ for Cd.

  • PDF

Development of a Functional Mortar for Algae Growth Restraining by Using Soluble Glass (수용성 유리를 이용한 조류 생장 억제형 기능성 모르타르의 개발)

  • Kim, Jun Hwan;Kang, Hojeong;Choi, Se Young;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.791-799
    • /
    • 2015
  • This study focuses on the algae growth restraining. Many researches on a critical damage from algae growth are published, but it is hard to find how th restrain. Abnormal algae increasing is a problem, because it makes red tides, biodeterioration, etc. Therefore this study aims to decrease the damage from algae growth. Some metal ions have been used microorganism killing materials from old times. Especially, Cu ions are highly effective. Based on these uses of the metal ions, a functional mortar which restrains algae growth is developed. The mortar contains soluble glass which dissolve in water. The soluble glass was made of Cu ions and phosphates. When the soluble glass is dissolved, Cu ions are soaked out stably from the soluble glass. Culture mediums which incubate algae were made to evaluate the developed mortar specimens. Culture mediums were filled with fresh water and sea water. Algae were incubated for fourteen days in culture mediums. The evaluating methods are measuring volume of the dissolved organic carbon and the chlorophyll. Using these two measurements, the mortar specimens are judged that can restrain algae or not. According to the result, the functional mortars of culture medium filled with fresh and sea water shows similar trend. The functional mortar for restraining algae growth performs that's role well.

Environmental Impacts of the Waste Rump in the Dongjin Gold-Silver-Copper Mine (동진 금·은·동 광산 주변에 방치된 폐석의 환경적 영향)

  • Lee, Mu-Seong;Jeon, Seo-Ryeong;Na, Choon-Ki;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 1996
  • Although the Dongjin Au-Ag-Cu mine had been abandoned since about forty years ago, the results of this study on the dispersion patterns and contamination level of heavy metals in the hydrologic system flowing via the waste rump show that the environmental impacts from the mine wastes are still significant. The stream water in the vicinity of the waste rump is severely acidified (pH 3.8 to 4.4) and highly enriched in various dissolved heavy metals. The heavy metal contents of the stream water and stream sediments are systematically attenuated with increasing distance from the mine area. However, it is worth to note that continuous attenuation of heavy metal contents in both media were reenriched in downstream area more than 800 m apart from the mine because it can be acted as a secondary source of heavy metal pollution. The heavy metals, especially Cd, Cu and Zn of polluted downstream sediments mainly occur in Fe-Mn oxides and organic materials, which indicates that these elements are the main pollutants from the waste rump of the Dongjin mine. The heavy metal contents of crops, such as sesame, perilla, red Pepper and brown rice, collected from the polluted farm land in the downstream area are lower than those of land plants from stream sides, but significantly higher in Cd, Cr, Cu and Zn than those from the unpolluted farm land. Especially, almost all of the crops in polluted farm land have been severly contaminated by Cd (>0.4 ppm). On the other hand, the heavy metal contents of the crops collected from refreshed farm land by means of a soil addition method shows significantly lowered level comparing with those of polluted area, which indicates that a soil addition method was effective for the refreshment of polluted farm land by toxic metallic pollutants. Wormwoods from this area showed very high contents in a11 the heavy metals even in unpolluted area (Cd > 1 ppm, Cr > 1 ppm, Cu > 11 ppm, Pb> 4 ppm, Zn > 55 ppm), indicating that a special caution must be payed when one takes ingest them.

  • PDF

Surface state Electrons as a 2-dimensional Electron System

  • Hasegawa, Yukio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.156-156
    • /
    • 2000
  • Recently, the surface electronic states have attracted much attention since their standing wave patterns created around steps, defects, and adsorbates on noble metal surfaces such as Au(111), Ag(110), and Cu(111) were observed by scanning tunneling microscopy (STM). As a typical example, a striking circular pattern of "Quantum corral" observed by Crommie, Lutz, and Eigler, covers a number of text books of quantum mechanics, demonstrating a wavy nature of electrons. After the discoveries, similar standing waves patterns have been observed on other metal and demiconductor surfaces and even on a side polane of nano-tubes. With an expectation that the surface states could be utilized as one of ideal cases for studying two dimensionakl (sD) electronic system, various properties, such as mean free path / life time of the electronic states, have been characterized based on an analysis of standing wave patterns, . for the 2D electron system, electron density is one of the most importnat parameters which determines the properties on it. One advantage of conventional 2D electron system, such as the ones realized at AlGaAs/GaAs and SiO2/Si interfaces, is their controllability of the electrondensity. It can be changed and controlled by a factor of orders through an application of voltage on the gate electrode. On the other hand, changing the leectron density of the surface-state 2D electron system is not simple. On ewqy to change the electron density of the surface-state 2D electron system is not simple. One way to change the electron density is to deposit other elements on the system. it has been known that Pd(111) surface has unoccupied surface states whose energy level is just above Fermi level. Recently, we found that by depositing Pd on Cu(111) surface, occupied surface states of Cu(111) is lifted up, crossing at Fermi level around 2ML, and approaches to the intrinsic Pd surface states with a increase in thickness. Electron density occupied in the states is thus gradually reduced by Pd deposition. Park et al. also observed a change in Fermi wave number of the surface states of Cu(111) by deposition of Xe layer on it, which suggests another possible way of changing electron density. In this talk, after a brief review of recent progress in a study of standing weaves by STM, I will discuss about how the electron density can be changed and controlled and feasibility of using the surface states for a study of 2D electron system. One of the most important advantage of the surface-state 2D electron system is that one can directly and easily access to the system with a high spatial resolution by STM/AFM.y STM/AFM.

  • PDF

Current Occurrence and Heavy Metal Contamination Assessment of Seepage from Mine Waste Dumping Sites in Korea (국내 광산폐기물 적치장 침출수 발생 현황 및 중금속 오염도 평가)

  • Park, Chang Koo;Kim, Jeong Wook;Jung, Myung Chae;Park, Hyun Sung;Kim, Dong Kwan;Oh, Youn Soo
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.588-595
    • /
    • 2018
  • This study has focused on evaluation of heavy metal contamination in seepage from 23 mine waste dumping sites in Korea. Seepage samples from the sites were taken and analyzed for heavy metals. The maximum levels (mg/L) in the samples were Al 53.98, As 16.19, Cd 1.15 Cu 37.30, Fe 28.64, Mn 39.00, Ni 0.097, Pb 0.750, and Zn 80.18. Among the sites, six mines were selected as continuous monitoring sites. As results of three months' monitoring of the sites, over the water guidelines for As, Cd, Cu, Fe, Mn, Zn and Al in seepage samples were found at two abandoned Au-Ag mines, Cd, Mn, Zn and Al at two Pb-Zn mines, and As, Fe and Mn at two other Fe-W mines. Therefore, those six mines need continuous monitoring on contamination assessment of seepage due to mining activities.

Microwave Dielectric Properties of $PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ Ceramics ($PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ 세라믹의 고주파 유전특성)

  • 이경호;최병훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.143-148
    • /
    • 2001
  • PbWO$_4$ can be densified at 85$0^{\circ}C$ and it shows fairy good microwave dielectric properties; dielectric constant($\varepsilon$$_{r}$) of 21.5, quality factor(Q $\times$f$_{0}$) of 37,224 GHz, and temperature coefficient of resonant frequency($\tau$/suf f/) of -31ppm/$^{\circ}C$. Due to its low sintering temperature, PbWO$_4$ can be used as a multilayered chip component at microwave frequency with high electrical performance by using high conductive electrode metals such as Ag and Cu. However, in order to use this material for microwave communication devices, the $\tau$$_{f}$ of PbWO$_4$ must be stabilized to near zero with high Q$\times$f$_{0}$. In present study, PbWO$_4$ was modified by adding TiO$_2$, B$_2$O$_3$, and CuO in order to improve the microwave dielectric properties without increasing the sintering temperature. The addition of TiO$_2$ increased the $\tau$$_{f}$ and $\varepsilon$$_{r}$, due to its high rr(200ppm/$^{\circ}C$) and $\varepsilon$$_{r}$(100). However, the addition of TiO$_2$ reduced the Q$\times$f$_{0}$ value. When the mot ratio of PbWO$_4$ and TiO$_2$ was 0.913:7.087, near zero $\tau$$_{f}$(0.2ppm/$^{\circ}C$) was obtaibed with $\varepsilon$$_{r}$=22.3, and Q$\times$f/$_{0}$=21,443GHz. With this composition, various amount of B$_2$O$_3$ and CuO were added in order to improve the quality factor. The addition, of B$_2$O$_3$ decreased the $\varepsilon$$_{r}$. However, increased Q$\times$f$_{0}$ and $\tau$$_{f}$. When 2.5 wt% of B$_2$O$_3$ was added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ =8.2, $\varepsilon$$_{r}$=20.3, Q$\times$f$_{0}$=54784 GHz. When CuO added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ was continuously decreased. And $\varepsilon$$_{r}$ . and Q$\times$f$_{0}$ were increased up to 1.0 wt% then decreased. At 0.1 wt% of CuO addition, the 0.913PbWO$_4$-7.087Ti0$_2$ Ceramic Showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$=4.4ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32,932 GHz.> 0/=32,932 GHz.X>=32,932 GHz.> 0/=32,932 GHz.

  • PDF

Electro-migration Phenomenon in Flip-chip Packages (플립칩 패키지에서의 일렉트로마이그레이션 현상)

  • Lee, Ki-Ju;Kim, Keun-Soo;Suganuma, Katsuaki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.11-17
    • /
    • 2010
  • The electromigration phenomenon in lead-free flip-chip solder joint has been one of the serious problems. To understand the mechanism of this phenomenon, the crystallographic orientation of Sn grain in the Sn-Ag-Cu solder bump has been analyzed. Different time to failure and different microstructural changes were observed in the all test vehicle and bumps, respectively. Fast failure and serious dissolution of Cu electrode was observed when the c-axis of Sn grain parallel to electron flow. On the contrary of this, slight microstructural changes were observed when the c-axis of Sn perpendicular to electron flow. In addition, underfill could enhance the electromigration reliability to prevent the deformation of solder bump during EM test.

Characterization of an Alkaline Protease from an Alkalophilic Bacillus pseudofirmus HS-54 (호알칼리성 Bacillus pseudofirmus HS-54가 생산하는 알칼리성 Protease의 특성)

  • Bang, Seong-Ho;Jeong, In-Sil
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.194-199
    • /
    • 2011
  • An alkalophilic bacterium producing alkaline protease was isolated from waste water and solar saltern sample and identified as Bacillus pseudofirmus HS-54 based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The HS-54 protease was purified to homogeneity using ammonium sulfate precipitation, DEAE cellulose column chromatography, and sephadex G-100 gel filtration with a 4.0 purification fold. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 27 kDa. The optimal pH and temperature for the purified protease activity were 10.0 and $50^{\circ}C$, respectively. The purified enzyme was relatively stable at the pH range of 6.0-11.0 and at the temperature below $50^{\circ}C$. This enzyme was activated by $Ca^{2+}$ and $Mg^{2+}$ and inhibited by $Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Al^{3+}$, $Ag^{2+}$. And this enzyme was strongly inhibited by PMSF, suggesting that it belongs to the serine protease superfamily.

Studies on the Conducion path and Conduction Mechanism in undeped polycrystalline Diamond Film (도핑되지 않은 다이아몬드 박막의 전기전도 경로와 전도기구 연구)

  • Lee, Bum-Joo;Ahn, Byung-Tae;Lee, Jae-Kab;Baek, Young-Joon
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.593-600
    • /
    • 2000
  • This paper investigated the conduction path and conduction mechanism in undoped polycrystalline diamond thin films deposited by microwave chemical vapor deposition. The resistances measured by ac impedance spectroscopy with different directions can not be explained by the previously-known surface conduction model. The electrodeposition of Cu and electroetching of Ag experiments showed that the conduction path is the grain boundaries within the diamond films. The electodeposition of Cu with an insulating surface layer further proved that the main conduction path in polycrystalline films in the grain boundaries. The film with high electrical conductivity has low activation energy of 45meV and higher dangling bond density. By considering the results and surface C chemical bonds, the H-C-C-H bonds at surface and in grain boundaries might be the origin of high conductivity in undoped diamond films.

  • PDF