• Title/Summary/Keyword: CuAg

Search Result 1,191, Processing Time 0.039 seconds

INTERFACIAL REACTION AND STRENGTH OF QFP JOINTS USING SN-ZN-BI SOLDER WITH VARYING LEAD PLATING MATERIALS

  • Iwanishi, Hiroaki;Imamura, Takeshi;Hirose, Akio;Ekobayashi, Kojirou;Tateyama, Kazuki;Mori, Ikuo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.481-486
    • /
    • 2002
  • We have investigated the effects of plating materials for Cu lead (Sn-lOPb, AwPdJNi, Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu) on properties of QFP joints using a Sn-8Zn-3Bi solder. The results were compared with the joints using Sn-3. 5Ag-0. 7Cu and Sn-37Pb solders. As a result, the joints with the Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu plated Cu lead had the reliability comparable to those of the Sn-3.5Ag-0.7Cu and Sn-37Pb soldered joints with respect to the joint strength after the high temperature holding tests at 348K to 423k. In particular, the joint with the Sn-3.5Ag plated Cu lead had the best reliability. This is caused by the low growth rate of a Cu-Sn interfacial reaction layer that degrades the joint strength of the soldered joints. Consequently, the Sn-3.5Ag plating was found to be most feasible plating for the Sn-8Zn-3Bi soldered joint.

  • PDF

Mechanical and Electrical Properties of Cu-15wt.%Ag Microcomposites Processed by Equal Channel Angular Pressing (등통로각압축공정을 이용하여 제작된 Cu-15wt.%Ag 미세복합재료의 미세구조 및 기계적, 전기적 특성)

  • Cho, Kyu Jin;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.128-136
    • /
    • 2011
  • Equal channel angular pressing (ECAP) with intermediate heat treatment was employed to optimize the strength of Cu-15 wt.%Ag. Changes in microstructure, electrical properties and mechanical properties were studied as a function of pressing methods and heat treatment. ECAPed Cu-15wt.%Ag exhibited ultrafine-grained microstructures with the shape and distribution of Ag-rich lamellae dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the initial dendrites of Ag-rich phase were elongated along the shear direction and developed into elongated filaments. For route C in which the sample was rotated by 180 degree after each pass, the morphology of initial dendrites of Ag-rich phase was not much modified and the networked structure remained even after 8 passes of ECAP. For route Bc in which the sample was rotated by 90 degree after each pass, the initial dendrites became finer by fragmentation with no pronounced change of the shape and distribution of Ag-rich lamellae. The strength of Cu-15wt.%Ag ECAPed using route Bc was found to be greater than those ECAPed using route A, suggesting that the substructural strengthening is more effective in strengthening than the interface strengthening.

Effect of Reflow Number on Mechanical and Electrical Properties of Ball Grid Array (BGA) Solder Joints (BGA 솔더 접합부의 기계적.전기적 특성에 미치는 리플로우 횟수의 효과)

  • Koo, Ja-Myeong;Lee, Chang-Yong;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, the mechanical and electrical properties of three different ball grid array (BGA) solder joints, consisting of Sn-37Pb, Sn-3.5Ag and Sn-3.5Ag-0.75Cu (all wt.%), with organic solderability preservative (OSP)-finished Cu pads were investigated as a function of reflow number. Based on scanning electron microscopy (SEM) analysis results, a continuous $Cu_6Sn5$, intermetallic compound (IMC) layer was formed at the solder/substrate interface, which grew with increasing reflow number. The ball shear testing results showed that the shear force peaked after 3 reflows (in case of Sn-Ag solder, 4 reflows), and then decreased with increasing reflow number. The electrical property of the joint gradually decreased with increasing reflow number.

  • PDF

A Study on Characterization of Sn-Ag-Cu and Sn-Cu Lead-free Solders by Adding of P (P(인)의 첨가에 따른 Sn-Ag-Cu계 및 Sn-Cu계 솔더의 특성에 관한 연구)

  • 김경대;김택관;황성진;신영의;김종민
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.104-108
    • /
    • 2002
  • This paper was investigated the lead free solder characteristics by P mass percentage chang e. Tension test, wetting balance test, spread test, and analysis of intermetallic compound after isothermal aging of Sn-2.5Ag-0.7Cu-0.005P, Sn-2.5Ag-0.7Cu-0.01P, Sn-2.5Ag-0.7Cu-0.02P, Sn-0.7Cu-0.005P were performed for estimation. By adding P on the solder alloys, it was showe d improvement of tensile strength, reduction of intermetallic compound growth and reduction of oxidization of fusible solder under wave soldering processes. After comparing solder alloy containing P with tin lead eutectic solder alloy, p containing solder alloys showed much better solderability than eutectic solder alloys.

  • PDF

Synthesis of Concentrated Cu-Ag Nano Sol for Ink-Jet Method

  • Park, Han-Sung;Choi, Young-Min;Ryu, Beyong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1370-1373
    • /
    • 2006
  • The Cu-Ag nanoparticles have been synthesized in aqueous medium using a hydrazine reduction method. The assisted role of polymeric dispersant on synthesis of highly concentrated Cu-Ag nanoparticles was studied. The 30wt% of Cu-Ag nanoparticles with the range of 10 nm in diameter was prepared.

  • PDF

Effect of oxygen on the brazing behavior of Ag-Cu eutectic alloy to stainless steel (스테인리스 강과 Ag-Cu 공정 합급간 brazing 특성에 미치는 산소의 영향)

  • Gang, Yeong-Jo;Han, Ji-Hye;Kim, Hye-Rim;Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.215-215
    • /
    • 2015
  • Ag-Cu 공정 합금을 이용한 스테인리스 강의 brazing 거동에 미치는 산소의 영향을 조사하고 최적 brazing 조건을 도출하기 위하여 304L 스테인리스 강에 대한 다양한 산소농도의 Ag-Cu 공정 합금의 젖음성을 실험적으로 측정하였다. 0.02~0.07wt%의 범위에 해당하는 산소를 함유하였을 때 양호한 젖음 특성을 나타내었고, sandwich brazing 테스트를 통하여 유사한 조건에서 건전한 접합면을 얻을 수 있었다.

  • PDF

The Microstructure and Interfacial Reaction between Sn-3.5wt.%Ag-1wt.%Zn and Cu Substrate (Sn-3.5wt.%Ag-1wt.%Zn 땜납과 Cu기판간의 미세조직 및 계면반응)

  • Baek, Dae-Hwa;Seo, Youn-Jong;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • This study examined the effects of adding Zn to Sn-3.5Ag solder on the microstructure changes and behavior of interface reaction of the solder joint with Cu substrate. The solder/Cu joints were examined with microscope to observe the characteristics of microstructure changes and interfacial reaction layer with aging treatment for up to 120 days at $150^{\circ}C$. Results of the microstructure changes showed that the microstructures were coarsened with aging treatment, while adding 1%Zn suppresses coarsening microstructures. The Sn-3.5Ag/Cu had a fast growth rate of the reaction layer in comparison with the Sn-3.5Ag-1Zn at the aging temperature of $150^{\circ}C$. Through the SEM/EDS analysis of solder joint, it was proved that intermetallic layer was $Cu_6Sn_5$ phase and aged specimens showed that intermetallic layer grew in proportion to $t^{1/2}$, and the precipitate of $Ag_3Sn$ occur to both inner layer and interface of layer and solder. In case of Zn-containing composite solder, $Cu_6Sn_5$ phase formed at the side of substrate and Cu-Zn-Sn phase formed at the other side in double layer. It seems that Cu-Zn-Sn phase formed at solder side did a roll of banrier to suppress the growth of the $Cu_6Sn_5$ layer during the aging treatment.

Reliability of High Temperature and Vibration in Sn3.5Ag and Sn0.7Cu Lead-free Solders (Sn3.5Ag와 Sn0.7Cu 무연솔더에 대한 고온 진동 신뢰성 연구)

  • Ko, Yong-Ho;Kim, Taek-Soo;Lee, Young-Kyu;Yoo, Sehoo;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.31-36
    • /
    • 2012
  • In this study, the complex vibration reliability of Sn-3.5Ag and Sn-0.7Cu having a high melting temperature was investigated. For manufacturing of BGA test samples, Sn-3.5Ag and Sn-0.7Cu balls were joined on BGA chips finished by ENIG and the chips were mounted on PCB finished OSP by using reflow process. For measuring of resistance change during complex vibration test, daisy chain was formed in the test board. From the results of resistance change and shear strength change, the reliability of two solder balls was compared and evaluated. During complex vibration for 120 hours, Sn-0.7Cu solder was more stable than Sn-3.5Ag solder in complex vibration test.

Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster (Au/Cu, Au/Ag 합금 나노 미립자의 합성과 광학적 성질)

  • Na Hye Jin Na;Kyoung Chul Lee;Eun Ah Yoo;Kang Sup Chung
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • In this study, a new method is presented to produce stable hydrophobic metal alloy nanocluster in chloroform solution including surfactant NaAOT(sodium bis(2-ethylhexyl)-sulfosuccinate) via the chemical reduction of metal salt $(HAuCl_4,\AgNO_3,\Cu(NO_3)_2)$ by sodium borohydride. For the alloy nanocluster, several samples were prepared by changing the molar ratio of Au/Cu, Au/Ag alloy nanocluster, 3:1, 1:1, 1:3. The alloy nanoclusters were characterized by UV-Visible spectrophotometer, TEM(Transmission Electron Microscope), and XPS(X-ray Photoelectron Spectrometer). With the change of the mole ratio of the alloy component, the wavelengths of the surface plasmon absorption shift linearly from 520 nm of the pure Au nanocluster to 570 nm of the pure Cu nanocluster for Au/Cu alloy nanoclusters and from 405 nm to 520 nm for Au/Ag alloy nanoclusters. The chemical shifts of the Au4f, Ag3d, Cu2p XPS peaks were observed with changing the molar ratio of the alloy element. The alloy nanoclusters in chloroform solution were made uniformly in size and colloidally stable for long periods of time. These results indicate that the method here is a very effective method for synthesizing hydrophobic alloy nanoclusters with uniform or nearly uniform particle size distribution.

Effect of CNT-Ag Composite Pad on the Contact Resistance of Flip-Chip Joints Processed with Cu/Au Bumps (CNT-Ag 복합패드가 Cu/Au 범프의 플립칩 접속저항에 미치는 영향)

  • Choi, Jung-Yeol;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.39-44
    • /
    • 2015
  • We investigated the effect of CNT-Ag composite pad on the contact resistance of flip-chip joints, which were formed by flip-chip bonding of Cu/Au chip bumps to Cu substrate metallization using anisotropic conductive adhesive. Lower contact resistances were obtained for the flip-chip joints which contained the CNT-Ag composite pad than the joints without the CNT-Ag composite pad. While the flip-chip joints with the CNT-Ag composite pad exhibited average contact resistances of $164m{\Omega}$, $141m{\Omega}$, and $132m{\Omega}$ at bonding pressures of 25 MPa, 50 MPa, and 100 MPa, the flip-chip joints without the CNT-Ag composite pad had an average contact resistance of $200m{\Omega}$, $150m{\Omega}$, and $140m{\Omega}$ at each bonding pressure.