• 제목/요약/키워드: Cu-to-Cu bonding

Search Result 295, Processing Time 0.025 seconds

An Experimental Study to Secure Electromagnetic Pulse Shielding Performance of Concrete Coated by an Arc Metal Spraying Process (아크 금속 용사 공법에 의해 코팅된 콘크리트의 전자기파 차폐 성능 확보를 위한 실험적 연구)

  • Jang, Jong-Min;Jeong, Hwa-Rang;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, an electromagnetic pulse shielding effect was obtained by applying the arc metal spraying method to the ordinary concrete. For this study, to evaluate the electrical properties in the thickness of the metal sprayed coating, 8 types of metals(Cu, CuAl, CuNi, CuZn, Al, Zn, ZnAl, AlMg) were sprayed as coatings with a thickness of 100, 200 and 500㎛. The electrical conductivity on the surface was measured with a 4-pin probe, and an electromagnetic wave shielding effect test was performed according to KS. Based on the test results, 200 ㎛ was proposed as an optimal metal coating thickness for electromagnetic pulse shielding, and it was thermally sprayed on a 300×300×100mm concrete specimen to analyze the electromagnetic wave shielding performance. However, in the area of adhesion strength, the maximum was 1.11MPa, which was found to be less than 74% of the target performance.

Solvent Mediated Hydrogen-bonded Supramolecular Network of a Cu(II) Complex Involving N2O Donor Ligand and Terephthalate (N2O 주개 리간드와 테레프탈레이트를 포함하는 구리(II) 착물의 용매를 매개로 한 수소결합형 초분자 네트워크)

  • Chakraborty, Jishnunil
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.199-203
    • /
    • 2011
  • The title one-dimensional hydrogen-bonded coordination compound $[Cu^{II}(C_{13}H_{17}N_3OBr)(C_8H_5O_4)]{\cdot}2H_2O.CH_3OH$ has been synthesized and characterized by single crystal X-ray diffraction study. The monomeric unit contains a square-planar $Cu^{II}$ centre. The four coordination sites are occupied by a tridentate anionic Schiff base ligand (4-bromo-2-[(2-piperazin-1-yl-ethylimino)-methyl]-phenol) which furnishes an $N_2O$-donor set, with the fourth position being occupied by the oxygen atom of an adjacent terephthalate unit. Two adjacent neutral molecules are linked through intermolecular N-H---O and O-H---N hydrogen bonds and generate a dimeric pair. Each dimeric pair is connected with each other via discrete water and methanol molecules by hydrogen bonding to form a one-dimensional supramolecular network.

Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films (알카리 표면개질 처리가 무전해 구리 도금피막과 폴리이미드 필름의 접합력에 미치는 효과)

  • Son, Lee-Seul;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The effects of the alkali surface modification process on the adhesion strength between electroless-plated Cu and polyimide films were investigated. The polyimide surfaces were effectively modified by alkali surface treatments from the hydrophobic to the hydrophilic states, and it was confirmed by the results of the contact angle measurement. The surface roughness increased by alkali surface treatments and the adhesion strength was proportional to the surface roughness. The adhesion strength of Cu/polyimide interface treated by KOH + EDA (Ethylenediamine) was 874 gf/cm which is better than that treated by KOH and KOH + $KMnO_4$. The results of XPS spectra revealed that the alkali treatment formed oxygen functional groups such as carboxyl and amide groups on the polyimide films which is closely related to the interfacial bonding mechanism between electroless-plated Cu and polyimide films. It could be suggested that the species and contents of functional group on polyimide films, surface roughness and contact angle were related with the adhesion strength of Cu/polyimide in combination.

A study on the properties of SmBCO coated conductors with stabilizer tape (SmBCO 고온 초전도 선재의 안정화재 특성)

  • Kim, Tae-Hyung;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Song, Kyu-Jeong;Ha, Hong-Soo;Lee, Nam-Jin;Park, Kyung-Chae;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.9-12
    • /
    • 2007
  • In this study. we searched for the mechanical and electrical properties of laminated coated conductors with stabilizer tape. Stabilizer tape plays a role for mechanical and electrical stability and environmental protection. Cu material stabilizer was laminated to Ag capping layer on SmBCO conductor layer. This architecture allows the wire to meet operational requirements including the stressless at cryogenic temperature and winding tension as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. First, we have experimentally studied mechanical bonding properties of the laminated Cu stabilizers on SmBCO coated conductors. We have laminated SmBCO coated conductors by continuous dipping soldering process, Second, we have investigated electrical properties of the SmBCO coated conductors with stabilizer lamination. We evaluated bonding properties, peeling strength and critical current for laminated SmBCO coated conductors with Cu stabilizers.

Aging Characteristic of Intermetallic Compounds and Bonding Strength of Flip-Chip Solder Bump (플립 칩 솔더 범프의 접합강도와 금속간 화합물의 시효처리 특성)

  • 김경섭;장의구;선용빈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of micro-electronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder bump and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6/Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

  • PDF

Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst

  • An, HyeLan;Kang, Leeseung;Ahn, Hyo-Jin;Choa, Yong-Ho;Lee, Chan Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • $TiO_2/CuS$ nanocomposites were fabricated by precipitation of nanosized CuS via sonochemical method on electrospun $TiO_2$ nanofibers, and their structure, chemical bonding states, optical properties, and photocatalytic activity were investigated. In the $TiO_2/CuS$ nanocomposite, the position of the conduction band for CuS was at a more negative than that of TiO; meanwhile, the position of the valence band for CuS was more positive than those for TiO, indicating a heterojunction structure belonging to type-II band alignment. Photocatalytic activity, measured by decomposition of methylene blue under visible-light irradiation (${\lambda}$ > 400 nm) for the $TiO_2/CuS$ nanocomposite, showed a value of 85.94% at 653 nm, which represented an improvement of 52% compared to that for single $TiO_2$ nanofiber (44.97% at 653 nm). Consequently, the photocatalyst with $TiO_2/CuS$ nanocomposite had excellent photocatalytic activity for methylene blue under visible-light irradiation, which could be explained by the formation of a heterojunction structure and improvement of the surface reaction by increase in surface area.

Bonding Properties of 14K White-Red Gold Alloy by Diffusion Bonding Process (14K 화이트-레드골드의 확산접합 공정에 따른 접합 물성 연구)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.386-391
    • /
    • 2017
  • Using a customized diffusion bonder, we executed diffusion bonding for ring shaped white gold and red gold samples (inner, outer diameter, and thickness were 15.7, 18.7, and 3.0 mm, respectively) at a temperature of $780^{\circ}C$ and applied pressure of 2300 N in a vacuum of $5{\times}10^{-2}$ torr for 180 seconds. Optical microscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the microstructure and compositional changes. The mechanical properties were confirmed by Vickers hardness and shear strength tests. Optical microscopy and FE-SEM confirmed the uniform bonding interface, which was without defects such as micro pores. EDS mapping analysis confirmed that each gold alloy was 14K with the intended composition; Ni and Cu was included as coloring metals in the white and red gold alloys, respectively. The effective diffusion coefficient was estimated based on EDS line scanning. Individual values of Ni and Cu were $5.0{\times}10^{-8}cm^2/s$ and $8.9{\times}10^{-8}cm^2/s$, respectively. These values were as large as those of the melting points due to the accelerated diffusion in this customized diffusion bonder. Vickers hardness results showed that the hardness values of white gold and red gold were 127.83 and 103.04, respectively, due to solid solution strengthening. In addition, the value at the interface indicated no formation of intermetallic compound around the bonding interface. From the shear strength test, the sample was found not to be destroyed at up to 100,000 gf due to the high bonding strength. Therefore, these results confirm the successful diffusion bonding of 14K white-red golds with a diffusion bonder at a low temperature of $780^{\circ}C$ and a short processing time of 180 seconds.

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

A Study on the Removal of Heavy Metals by Microorganism in the Biological Wastewater Treatment (생물학적 폐수처리 공정에서의 미생물에 의한 중금속 제거에 관한 연구)

  • Choung, Youn Kyoo;Min, Byeong Heon;Park, Joon Hwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1990
  • In this research, biological uptake of heavy metals(Cd(II), Cu(II), Zn(II)) was measured under various conditions ; pH, initial heavy metal concentration, temperature, contact time and the amount of biomass through batch test. From this research, it was found that heavy metals might be removed through adsorption and accumulation in activated sludge process. Heavy metals were highly concentrated by microbial floc in activated sludge. Also, the removal efficiency was reached up to 80~90% within and after 1 hour the increase of removal efficiency was minimal. The order of accumulation efficiency was Cu(II)>Zn(II)>Cd(II), and the bonding strength between heavy metals and microbial floc may be expressed in order of Cu(II)>Zn(II)>Cd(II).

  • PDF

Flip Chip Process for RF Packages Using Joint Structures of Cu and Sn Bumps (Cu 범프와 Sn 범프의 접속구조를 이용한 RF 패키지용 플립칩 공정)

  • Choi, J.Y.;Kim, M.Y.;Lim, S.K.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2009
  • Compared to the chip-bonding process utilizing solder bumps, flip chip process using Cu pillar bumps can accomplish fine-pitch interconnection without compromising stand-off height. Cu pillar bump technology is one of the most promising chip-mounting process for RF packages where large gap between a chip and a substrate is required in order to suppress the parasitic capacitance. In this study, Cu pillar bumps and Sn bumps were electroplated on a chip and a substrate, respectively, and were flip-chip bonded together. Contact resistance and chip shear force of the Cu pillar bump joints were measured with variation of the electroplated Sn-bump height. With increasing the Sn-bump height from 5 ${\mu}m$ to 30 ${\mu}m$, the contact resistance was improved from 31.7 $m{\Omega}$ to 13.8 $m{\Omega}$ and the chip shear force increased from 3.8 N to 6.8 N. On the contrary, the aspect ratio of the Cu pillar bump joint decreased from 1.3 to 0.9. Based on the variation behaviors of the contact resistance, the chip shear force, and the aspect ratio, the optimum height of the electroplated Sn bump could be thought as 20 ${\mu}m$.

  • PDF