• 제목/요약/키워드: Cu-layer deposition time

검색결과 52건 처리시간 0.026초

Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성 (Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition)

  • 김윤진;김인영;강명길;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향 (Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition)

  • 최재웅;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

Temperature and the Interfacial Buffer Layer Effects on the Nanostructure in the Copper (II) Phthalocyanine: Fullerene Bulk Heterojunction

  • Kim, Hyo Jung;Kim, Jang-Joo;Jeon, Taeyeol;Kong, Ki Won;Lee, Hyun Hwi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.275.1-275.1
    • /
    • 2014
  • The effects of the interfacial buffer layer and temperature on the organic bulk heterojunction (BHJ) nanostructures of copper phthalocyanine (CuPc) and fullerene (C60) systems were investigated using real time in-situ x-ray scattering. In the CuPc:C60 BHJ structures, standing-on configured ${\gamma}$-CuPc phase was formed by co-deposition of CuPc and C60. Once formed ${\gamma}$-phase was thermally stable during the annealing upon $180^{\circ}C$. Meanwhile, the insertion of CuI buffer layer prior to deposition of the CuPc:C60 BHJ layer induced lying-down configured CuPc crystals in the BHJ layer. The lying CuPc peak intensity and the lattice parameter were increased by the thermal annealing. This increment of the intensity seemed to be related to the strain at the interface between CuPc:C60 and CuI, which was proportional to the enhancement of the power conversion efficiency of the device.

  • PDF

무전해 도금법으로 제조된 Ni-B 확산 방지막의 Cu 확산 거동 (Cu Diffusion Behavior of Ni-B Diffusion Barrier Fabricated by Electroless Deposition)

  • 최재웅;황길호;한원규;이완희;강성군
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.577-584
    • /
    • 2005
  • Thin Ni-B layer, $1{\mu}m$ thick, was electrolessly deposited on Cu electrode fabricated by electro-deposition. The purpose of the layer is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier. The layers were annealed at $580^{\circ}C$ with and without pre-annealing at $300^{\circ}C$ for . 30minutes. In the layer with pre-annealing, the amount of Cu diffusion was lower about 5 times than the layer without pre-annealing. The difference in Cu concentration may be attributed to $Ni_3B$ formation prior to Cu diffusion. However, the difference in Cu concentration decreased during the annealing time of 5 h due to the grain growth of Ni.

The effect of plamsa treatment on superconformal copper gap-fill

  • 문학기;김선일;박영록;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.249-249
    • /
    • 2010
  • The effect of forming a passivation layer was investigated in superconformal Cu gap-filling of the nano-scale trench with atomic-layer deposited (ALD)-Ru glue layer. It was discovered that the nucleation and growth of Cu during metal-organic chemical vapor deposition (MOCVD) were affected by hydrogen plasma treatments. Specifically, as the plasma pretreatment time increased, Cu nucleation was suppressed proportionally. XPS and Thermal Desorption Spectroscopy indicated that hydrogen atoms passivate the Ru surface, which leads to suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. For gap-fill property, sub 60-nm ALD Ru trenches without the plasma pretreatment was blocked by overgrown Cu after the Cu deposition. With the plasma pretreatment, superconformal gap filling of the nano-scale trenches was achieved due to the suppression of Cu nucleation near the entrances of the trenches. Even the plasma pretreatment with bottom bias leads to the superconformal gap-filling.

  • PDF

펄스 레이저 증착법으로 제작한 Cu2ZnSnS4 박막의 구조 특성 변화에 대한 증착 시간 효과 (Effect of the Deposition Time onto Structural Properties of Cu2ZnSnS4 Thin Films Deposited by Pulsed Laser Deposition)

  • 변미랑;배종성;홍태은;정의덕;김신호;김양도
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.7-12
    • /
    • 2013
  • The $Cu_2ZnSnS_4$ (CZTS) thin film solar cell is a candidate next generation thin film solar cell. For the application of an absorption layer in solar cells, CZTS thin films were deposited by pulsed laser deposition (PLD) at substrate temperature of $300^{\circ}C$ without post annealing process. Deposition time was carefully adjusted as the main experimental variable. Regardless of deposition time, single phase CZTS thin films are obtained with no existence of secondary phases. Irregularly-shaped grains are densely formed on the surface of CZTS thin films. With increasing deposition time, the grain size increases and the thickness of the CZTS thin films increases from 0.16 to $1{\mu}m$. The variation of the surface morphology and thickness of the CZTS thin films depends on the deposition time. The stoichiometry of all CZTS thin films shows a Cu-rich and S-poor state. Sn content gradually increases as deposition time increases. Secondary ion mass spectrometry was carried out to evaluate the elemental depth distribution in CZTS thin films. The optimal deposition time to grow CZTS thin films is 150 min. In this study, we show the effect of deposition time on the structural properties of CZTS thin film deposited on soda lime glass (SLG) substrate using PLD. We present a comprehensive evaluation of CZTS thin films.

FCCL 제작 시 Cu Sputter 조건에 따른 Through Hole 특성 연구

  • 김상호;윤여완
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.15-16
    • /
    • 2008
  • In case manufacturing COF, through hole should be made to be used for a pathway connecting the conductive layers of its both faces. In case Cu-plating inside of through hole with electroless plating way, contact between Cu and PI film gets bad to be fell apart from PI by the impact of applying to the electric devices. Therefore, after sputtering is applying on inner through hole, then a method to perform electroplating process. In this study, after changing sputtering condition to manufacture FCCL, we looked the changeability of the upper PI and inner hole Cu layers. Making use of RF Magnetron sputtering equipment, we coated Cu thin film and Cu-plated on it through electroplating. After cold-mounting the completed FCCL, we examined hole section through an optical microscope. From the result of test, with parameters deposition pressure and deposition time, both the thickness of the hole plated layer and PI plated upper layer increased at regular rate, increasing the thickness of Cu sputter layer. However, from the result of test in increasing RF-power, we could know the increment rate of hole plated layer is considerably greater than that of PI plated upper layer. Therefore, we finally acquired good result; if you want only to increase the plated layer of inner hole, it's much better to increase RF-power.

  • PDF

COF(Chip On Film)에서의 Polyimide/Buffer layer/Cu 접착력 향상 (Adhesive improvement of the Polyimide/Buffer layer/Cu at the COF(Chip On Film))

  • 이재원;김상호;이지원;홍순성
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.11-17
    • /
    • 2004
  • This research has been progressed for adhesive improvement of the Polyimide/Buffer layer/Cu at the COF(Chip On Film) which induced as the alternative plan about high concentration of a circuit or substrates according to demands of miniaturization and high efficiency of various electronic equipment. RF plasma equipment was applied to when plama pretreatment was performed for improvement of adhesive strength of PI and Cr as the buffer layer. Experimental fluents were a species of the buffer layer, depositied time and the ratio of $O_2$/Ar when performed to plasma pretreatment. The results are that Ni was superior to Cr at peel test according to a species of the buffer layer, peel strength and Cu THK were showed proportional relation to deposition structure of the same buffer layer and sample of the Cr depositied time(30 sec) and Cu depositied time(20 min) was showed good adhesion to peel test according to Cr's depositied time and Cu's depositied time. When perform PI's plasma pretreatment peel strength and $O_2$/Ar ratio were showed proportional relation. But $O_2$/Ar(2/5) was best condition since then decreased.

  • PDF

Sputter Seeding을 이용한 CVD Cu 박막의 비선택적 증착 및 기판의 영향 (The Blanket Deposition and the Sputter Seeding Effects on Substrates of the Chemically Vapor Deposited Cu Films)

  • 박종만;김석;최두진;고대홍
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.827-835
    • /
    • 1998
  • Blanket Copper films were chemically vapor deposited on six kinds for substrates for scrutinizing the change of characteristics induced by the difference of substrates and seeding layers. Both TiN/Si and {{{{ { SiO}_{2 } }}/Si wafers were used as-recevied and with the Cu-seeding layers of 40${\AA}$ and 160${\AA}$ which were produced by sputtering The CVD processes were exectued at the deposition temperatures between 130$^{\circ}C$ and 260$^{\circ}C$ us-ing (hfc)Cu(VTMS) as a precursor. The deposition rate of 40$^{\circ}C$ Cu-seeded substrates was higher than that of other substrates and especially in seeded {{{{ { SiO}_{2 } }}/Si substrate because of the incubation period reducing in-duced by seeding layer at the same deposition time and temperature. The resistivity of 160${\AA}$ Cu seeded substrate was lower then that of 40 ${\AA}$ because the nucleation and growth behavior in Cu-island is different from the behavior in {{{{ { SiO}_{2 } }} substrate due to the dielectricity of {{{{ { SiO}_{2 } }}.

  • PDF

순차 스퍼터 법과 증발 법으로 제작한 박막의 특성 (Characteristics of Thin Films Fabricated by Using the Layer-by-Layer Sputtering and Evaporation Method)

  • 천민우;박용필;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.571-574
    • /
    • 2003
  • The thin films fabricated by using the layer-by-layer sputtering was compared with the thin film fabricated by using the evaporation method. Re-evaporation in the form of Bi atoms or $Bi_2O_3$ molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer-by-layer deposition. On the other hand, the respective atom numbers corresponding to BiSrCaCuO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BiSrCaCuO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF