• Title/Summary/Keyword: Cu-catalyst

Search Result 356, Processing Time 0.027 seconds

Development of Metal Loaded Activated Carbon Fiber for Eliminating Targeted VOCs Originated from Solvent(II) (특정용제 Target 형 활성금속첨착 활성탄소섬유의 개발(II))

  • Choi, Kang-Yong;Kim, Kwang-Su;Kim, Tae-Won;Jun, Min-Kee;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.472-478
    • /
    • 2013
  • Cu and Cr as a base metal and Pt, Pd as a supportive metal were selected for improving adsorption capacity of activated carbon fiber in eliminating especially targeted VOCs. Preparing variables such as metal loading, loading temperature, loading hours and kinds of loaded metals were changed. Properties measurement was carried out by SEM (scanning electron microscope), XRF (x-ray fluorescence analysis) and EDX (Energy Dispersive X-ray spectrometer) and adsorption capacity evaluation were also performed by gas analyzer. Under this study, the adsorption capacity of complex metal loaded activated carbon fiber was improved positively than that of single metal loaded activated carbon fiber. And we found that the best conditions for metal loading were 5 hours loading time at $100^{\circ}C$ and the adsorption capacity was enhanced almost double compared with other condition based activated carbon fiber. Cu-Cr-Pt-Pd loaded activated carbon fiber showed the best adsorption capacity. Also we confirmed that more than 0.5 second is necessary for adsorbate diffusion and adsorption over activated carbon fiber.

A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts (이온성 액체 촉매를 이용한 Tricyclopentadiene 합성에 관한 연구)

  • Kim, Su-Jung;Han, Jeongsik;Jeon, Jong-Ki;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.593-597
    • /
    • 2015
  • Tricyclopentadiene (TCPD) as a next generation high density fuel was synthesized by Diels-Alder oligomerization reaction of DCPD. TCPD was prepared by ionic liquid (IL) catalysts with combination of cationic and anionic precursors. Two kinds of anionic precursors such as copper(I) chloride (CuCl) and iron(III) chloride ($FeCl_3$) and cationic precursors such as triethylamine hydrochloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC) were used. The preparation of TCPD using IL catalyst was superior to that using Diels-Alder reaction in terms of DCPD conversion and TCPD yield. In addition, TCPD yield was correlated with Lewis acidity by changing the ratio of anionic and cationic precursors. The TCPD yield was higher when using CuCl as anionic precursor than that of using $FeCl_3$. Control of Lewis acidity by changing the molar ratio of anionic and cationic precursors could further improve TCPD yield as well.

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Oxidation of Cu(II)-EDTA by TiO2 Photo-Catalysis(I) - The Effects of TiO2 Loading & Initial pH of Solution - (TiO2 광-촉매 반응에 의한 Cu(II)-EDTA의 산화(I) - TiO2 량과 pH의 영향 -)

  • Chung, Hung-Ho;Park, Eun-Hee;Rho, Jae-Seong;Sung, Ki-Woung;Cho, Young-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.154-159
    • /
    • 1999
  • EDTA (ethylenediaminetetraacetic acid), a chelating agent is most widely used in industrial applications, especially for cleaning of metals in water, frequently prohibits metal removal from water in conventional water treatment technologies. It could be easier to remove aqueous metal ions by the breakdown of DETA complexed bonds first. This study investigated the availability of $TiO_2$ photo-catalysis for the aqueous phase oxidation of Cu(II)-EDTA, under an aerobic condition at $20^{\circ}C$ with $TiO_2$ (Degussa P-25) and 1.79mM of Cu(II)-EDTA. When $TiO_2$ loading was 2.0 g/L, the photo-catalytic oxidation of Cu(II)-EDTA was maximal. The tendency of EDTA adsorption onto the catalyst surface was affected by $TiO_2$ surface charge, and the oxidation rate of Cu(II)-EDTA by photo-catalysis was shown to be dependent upon the tendency of EDTA adsorption before photo-irradiation.

  • PDF

Decomposition of Methanol-Water on $M^{II}$/ Cu / ZnO system ($M^{II}$/ Cu / ZnO 계에서의 메탄올-물의 반응)

  • Young-Sook Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The reaction of methanol-water mixture to $CO_2$ and $H_2$ on alkaline earth metal-copper-zinc oxide has been studied in the temperature range of 150 ${\sim}\;300^{\circ}C$. Generally the addition of the alkaline earth metal to Cu/ZnO resulted in an enhancement of selectivity for $CO_2$ formation and a reduction of catalytic activity. Measurable activities were found from 150$^{\circ}C$, 200$^{\circ}C$, and 250$^{\circ}C$ on Mg/Cu/ZnO, Ca/Cu/ZnO, and Ba/Cu/ZnO respectively. However, the highest selectivity for $CO_2$ formation was observed in Ba/Cu/ZnO catalyst at 250$^{\circ}C$. The effect of alkaline earth metal or ZnO on the reactivity was investigated using temperature programmed desorption of $CO_2$ or temperature programmed reduction with $H_2$ over catalysts respectively. It was found that $CO_2$ interacts more strongly in the sequence of MgO < CaO < BaO and ZnO decereases the reduction temperature of CuO. From the results, it was suggested that ZnO activates $H_2$ in the redox process of Cu component and alkaline earth metals adsorbs $CO_2$ in the catalytic process.

  • PDF

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Effect of Additives on Catalytic Activity in Thermal Catalytic De-NOx Process (Thermal catalytic de-NOX 공정에서 첨가제가 촉매의 활성에 미치는 영향에 관한 연구)

  • 이진구;김태원;최재순;김정호;이재수;장경욱;박해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • We sdudied effect of additives on catalytic activity in thermal catalytic de-NOx process which was composed of thermal reduction, catalytic reduction and catalytic oxidation stage. Pd-Pt/${\gamma}$-$Al_2O_3$ catalysts with the addition of transition metals(Co, Cu, Fe, Ni, W, Zn, Zr) and rare earth metals(Ce, Sr) were prepared by the conventional washcoating method. Those catalysts were characterized by CO pulse chemisorption, ICP, $N_2$ adsorption, SEM and XRD. The effect of catalyst additives on NOx removal for diesel emission was studied in thermal catalytic de-NOx process at reduction temperature(350~50$0^{\circ}C$), space velocity(5,000~20,000 $hr^{-1}$) and the engine load(0~120kW). The concentraton of CO, $CO_2$, NO and $NO_2$ in the exhaust gas increased with the engine load. On the other hand the concentration of $O_2$ decreased. The de-NOx activityof all prepared catalysts increased with respect to high CO and low $O_2$ level in the thermal reduction stage of the process. Insertion of Ce to Pt-Pd/${\gamma}$-$Al_2O_3$ catalyst showed the best activity of all the catalysts under these experimental conditions. De-NOx catalysts are effective to remove CO in addition to NOx in the catalytic reduction stage.

  • PDF

A Study on the Catalyst for the Synthesis of DME with Hydrogen Energy Density (수소 에너지 밀도가 높은 디메틸에테르(DME) 제조 촉매에 관한 연구)

  • Jang, Eun-Mee;Baek, Young-Soon;Oh, Young-Sam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.445-452
    • /
    • 2008
  • DME(Dimethyl ether) Dimethyl Ether (DME) is a new clean fuel and an environmental-benign energy resource. In comparison with other fuels, DME rapidly decomposes into carbon dioxide ($CO_2$) and water in the atmosphere without forming ozone. It can be manufactured from various energy sources including natural gas, coal, biomass and spent plastics. In addition to its environmentally friendly properties, DME is considered as one of the most promising candidates for the substitute of LPG and diesel fuel. In this work, we will be studied to find optimized condition for the catalyst of DME energy manufacture from hydrogen and carbon oxide and its chemical and physical characteristics.

Microstructure Analysis of Y-Ba-Cu-O thin Films Grown on STO Substrates with Controlled ZnO Nanorods (ZnO 나노막대가 형성된 STO기판에 증착한 Y-Ba-Cu-O 박막의 미세구조 분석)

  • Oh, S.K.;Jang, G.E.;Tran, H.D.;Kang, B.W.;Kim, K.W.;Lee, C.Y.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.47-51
    • /
    • 2009
  • For many large-scale applications of high-temperature superconducting materials, large critical current density ($J_c$) in high applied magnetic fields are required. A number of methods have been reported to introduce artificial pinning centers in $YBa_2Cu_3O_{7-{\delta}}$ films for enhancement of their $J_c$. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-{\delta}}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as pinning centers. Au catalyst nanoparticles were synthesized on STO substrates with self assembled monolayer to control the number of ZnO nanorods. The density of Au nanoparticles is approximately $240{\sim}260{\mu}m^{-2}$ with diameters of $41{\sim}49nm$. ZnO nanorods were grown on STO by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6{\mu}m$ in length respectively. YBCO films deposited directly on STO substrates show the c-axis orientation, while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

  • PDF

Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process (알루미나가 포함된 복합산화물의 제조와 열물성 특성평가)

  • Lim, Saet-Byeol;You, Hee-Jung;Hong, Tae-Whan;Jung, Mie-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.