• Title/Summary/Keyword: Cu-catalyst

Search Result 356, Processing Time 0.029 seconds

Studies on Activity and Characteristics of CuO/ZnO/TiO2 Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응을 위한 CuO/ZnO/TiO2계 촉매의 활성 및 특성에 관한 연구)

  • Koh, Hyoung-Lim;Kim, Tae-Won;Lee, Jihn-Koo;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.956-960
    • /
    • 1998
  • Cu-Zn and Cu-Zn-Ti catalysts for the steam reforming of methanol were prepared. This reaction was carried out at atmospheric pressure, $250^{\circ}C$, steam/methanol molar ratio 1.5, and contact time 0.1 g-cat.hr/mL-feed. In case of the catalyst with 3 mol% of $TiO_2$, the activity was superior to that of catalysts without $TiO_2$. The reaction products were mainly hydrogen and carbon dioxide. It was found that catalytic activity was not related to specific surface area but affected by metallic copper area which was measured by $N_2O$ decomposition and increased with the addition of $TiO_2$ content. XPS and XRD showed that the oxidation state of zinc was not changed during reaction, but oxidation states of copper existed in Cu(0) or Cu(I).

  • PDF

Sulfuric Acid Decomposition on CuFeAlOx Catalysts (CuFeAlOx 촉매상에서의 황산분해 반응)

  • Jeon, Dong-Kun;Lee, Kwan-Young;Gong, Gyeong-Taek;Yoo, Kye-Sang;Kim, Hong-Gon;Jung, Kwang-Deog;Lee, Byung-Gwon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • CuFeOx/$Al_2O_3$ catalysts are developed for the use in sulfuric acid decomposition which is a subcycle in thermochemical iodine-sulfur cycle to split water into hydrogen and oxygen. Both Cu and Fe components are co-precipitated with Al component to enhance distribution of active components. Developed catalysts are improved in the capability of sulfuric acid decomposition and endurance under highly acidic environment compared to commercial catalysts such as Pt/$Al_2O_3$ and $2CuO{\cdot}Cr_2O_3$. Developed CuFeAlOx catalysts exhibited higher sulfuric acid decomposition ability than $2CuO{\cdot}Cr_2O_3$ and longer endurance trends than Pt/$Al_2O_3$ maintaining comparable performance, respectively.

Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation (공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성)

  • Ji, In-Geol;Han, Kyu-Suk;Oh, Jae-Hee;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

Synthesis of Unsymmetrical Trisannelated Benzenes (비대칭적으로 삼고리화된 벤젠의 합성)

  • Mahmoodi, Nosrat O.;Fatemeh, Mostaghni
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.52-56
    • /
    • 2002
  • Synthesis of unsymmetrical trisannelated benzenes such as 2,3,4,5,6,7,8,9,10,11-decahydro-1H-cyclopenta[l]phenanthrene (1c) and 1,2,3,4,5,6,7,8,9,10-decahydrobenz[e]-as-indacene (1d) is described. The synthetic approach involves efficient condensation of pre-formed enones such as bicyclohexyliden-2-one (3), bicyclohexyl-1-en-2-one (4) and bicyclopentyliden-2-one (5) in the presence of cyclopentanone and cyclohexanone using anhydrous $CuCl_2$ as a catalyst.

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

Synthesis of High Molecular Weight 3-Arm Star PMMA by ARGET ATRP

  • Jeon, Hyun-Jeong;Youk, Ji-Ho;Ahn, Sung-Hee;Choi, Jin-Hwan;Cho, Kwang-Soo
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.240-244
    • /
    • 2009
  • High molecular weight(MW), 3-arm star poly(methyl methacrylate)(PMMA) with a narrow MW distribution($M_n$=570,000 g/mol, PDI=1.36) was successfully synthesized by activators regenerated by electron transfer(ARGET) atom transfer radical polymerization(ATRP). The polymerization was carried out with a trifunctional initiator/$CuBr_2$/N,N,N',N",N"-pentamethyldiethy lenetriamine(PMDETA) initiator/catalyst system in the presence of a tin(II) 2-ethylhexanoate [$Sn(EH)_2$] reducing agent at $90^{\circ}C$. The concentration of the copper catalyst was as low as 30 ppm, and a high initiation efficiency of the initiating sites was obtained. The chain-end functionality of the high MW, 3-arm star PMMA was confirmed by a chain extension experiment with styrene via ARGET ATRP, using the same catalyst system.

A Study on the Optimum Design for LTCC Micro-Reformer: Design and performance evalution of monolith fuel reformer/PROX (LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구 ; 일체형 Reformer/PROX 반응기의 설계 및 성능평가)

  • Chung, C.H.;Oh, J.H.;Jang, J.H.;Jeong, M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.615-616
    • /
    • 2006
  • A micro-fuel processor system integrating steam reformer and partial oxidation reactor was manufactured using low temperature cofired ceramic (LTCC). A CuO/ZnO/$Al_2O_3$ catalyst and Pt-based catalyst prepared by wet impregnation were used for steam reforming and partial oxidation, respectively. The performance of the LTCC micro-fuel processor was measured at various operating conditions such as the effect of the feed flow rate, the ratio of $H_2O/CH_3OH$, and the operating temperature on the LTCC reformer and CO clean-up system. The catalyst layer was loaded with "Fill and Dry" coating for small volume. The product gas was composed of $70\sim75%$ hydrogen, $20\sim25%$ carbon dioxide, and $1\sim2%$ carbon monoxide at $250\sim300^{\circ}C$, respectively.

  • PDF

The Experimental Study on the Direct Synthesis of DME (Dimethyl Ether) in the Fixed Bed Reactor. (고정층 반응기에서 DME 직접합성에 관한 실험 연구)

  • Choi, Chang Woo;Cho, Wonihl;Ju, Woo-Sung;Lee, Seung-Ho;Baek, YoungSoon;Row, Kyung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.283-290
    • /
    • 2004
  • The single-step process for conversion of syngas to DME give higher conversion than the syngas-to-methanol process. This arises because of a synergy among the three simultaneous reaction, methanol synthesis, methanol dehydration and water gas shift reaction, in the process. we would find the optimal condition of the process which these advantages. The optimal condition of DME synthesis reaction over a commercial $Cu/Zn/Al_2O_3$ catalyst and Hybrid catalyst in a fixed bed reactor. The syngas-to-dimethyl ether conversion was examined on various reaction condition (Temperature 473~553K, $H_2/CO$ ratio 1~3, Pressure 30'50atm, GHSV 1000~4000).

Fabrication and Performance Evaluation of MEMS Methanol Reformer for Micro Fuel Cells (마이크로 연료전지용 MEMS 메탄올 개질기의 가공과 성능시험)

  • Kim, Tae-Gyu;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1196-1202
    • /
    • 2006
  • A MEMS methanol reformer was fabricated and its performance was evaluated in the present study. Catalytic steam reforming of methanol was selected because the process had been widely applied in macro scale reformers. Conventional Cu/ZnO catalyst that was prepared by co-precipitation method to give the highest coating quality was used. The reactor structure was made by bonding three layers of glass wafers. The internal structure of the wafer was fabricated by the wet-etching process that resulted in a high aspect ratio. The internal surface of the reactor was coated by catalyst and individual wafers were fusion-bonded to form the reactor structure. The internal volume of the microfabricated reactor was $0.3cm^3$ and the reactor produced exhaust gas with hydrogen concentration at 73%. The production rate of hydrogen was 4.16 ml/hr that could generate power of 350 mW in a typical PEM fuel cell.

Study on synthesis of carbon nanomaterials by hydrogen mixing in counterflow methane diffusion flames (메탄 대향류 확산화염내 수소를 첨가한 탄소나노물질 합성에 관한 연구)

  • Shin, Woo-Jung;Choi, Jung-Sik;Yoon, Seok-Hun;Lee, Hyun-Sik;Choi, Jae-Hyuk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.88-89
    • /
    • 2011
  • The study on synthesis of carbon nanomaterials by H2 mixing in counterflow methane diffusion flames has been experimentally conducted. We have also investigated on effect of catalyst and temperature in flame. The counterflow flame was formed by many kind of gas (fuel side using $CH_4-H_2-N_2$ and oxidizer side $N_2-O_2$) and nitrogen shields discharge on each other side to cut off oxidizer of the atmosphere. Ferrocene was used as a metal catalyst for CNTs synthesis. substrate was used to deposit carbon nanomaterials and these were analyzed by FE-SEM. We could find that carbon nanotubes and many kind of carbon nano materials were formed in Cu wire substrate, through this experiment.

  • PDF