• 제목/요약/키워드: Cu-Zn-Al

검색결과 615건 처리시간 0.025초

Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향 (Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting)

  • 김기태;양재학;임영석
    • 한국주조공학회지
    • /
    • 제30권4호
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.

초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성 (A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications)

  • 김성준;나혜성;한태교;이봉근;강정윤
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

ZnO의 전기전도도에 미치는 CuO 및 $Al_2O_3$의 첨가영향 (Effect of CuO and $Al_2O_3$ Addition on the Electrical Conductivity of ZnO)

  • 전석택;최경만
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.106-112
    • /
    • 1995
  • In order to examine the effect of CuO and Al2O3 addition on the electrical conductivity of ZnO, both Al2O3 (0, 1, 2, 5, 10at.%) and CuO (1, 5at.%) were added to ZnO. Al2O3 addition (~2at.% Al) increased the total electrical conductivity of ZnO which was already decreased by CuO doping effect Above solid solubility of Al (~2at.%), ZnAl2O4 formed and the total electrical conductivity decreased due to the decrease of sintered density. Impedance measurements were used to know the reason and degree of contribution of three resistive elements, ZnO grain, ZnO/CuO, and ZnO/ZnO grain boundaries, to the total electrical conductivity changed.

  • PDF

Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질 (Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition)

  • 심성용;임수근
    • 열처리공학회지
    • /
    • 제20권5호
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst

  • Jeong, Cheonwoo;Park, Jongha;Kim, Jinsung;Baik, Joon Hyun;Suh, Young-Woong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권2호
    • /
    • pp.191-196
    • /
    • 2019
  • The phase of Cu,Zn,Al precursors strongly affects the activity of their final catalysts. Herein, the Cu,Zn,Al precursor was prepared by precipitation of $Al^{3+}$ onto primitive, amorphous Cu,Zn precipitate. This precursor turned out to be a phase mixture of zincian malachite and hydrotalcite in which the latter phase was less abundant compared to the co-precipitated precursor. The final catalyst derived from this precursor exhibited a little higher copper surface area and methanol synthesis activity than the co-precipitated counterpart. Therefore, the two precursor phases need to be mixed in an adequate proportion for the preparation of active $Cu/ZnO/Al_2O_3$ catalyst.

SPS법을 이용한 CuZnAl계 형상기억합금의 제조 (Manufacturing of Cu-Zn-Al shape memory alloy using spark plasma sintering)

  • 박노진;이인성;조경식;김성진
    • 한국결정성장학회지
    • /
    • 제12권4호
    • /
    • pp.172-177
    • /
    • 2002
  • CuZnAl계 형상기억합금은 경제성, 열간 가공성 등이 우수하며 변태온도의 조절이 쉬운 등 여러 장점을 가지고 있으나, 열간 가공 중에 결정립이 쉽게 커지며, 취성이 심하고, 열이력에 대해서 형상기억 효과가 빨리 감소되는 등의 단점이 있다. 이러한 단점들은 결정립크기를 미세화함으로써 어느 정도 해소할 수 있다고 알려져 있다. 본 연구에서는 Cu-24.78Zn-9.11Al(at.%)과 Cu-13.22Zn-17.24Al(at.%)의 조성을 갖으며 비교적 작은 결정립크기를 갖는 형상기억합금을 99.9% 이상의 순도를 갖는 Cu, Zn 및 Al원소분말을 이용하여 SPS(spark plasma sintering) 방법으로 제조하였다. SPS 공정을 통하여 원소분말을 이용한 합금화가 가능함을 확인하였으며, 75-150 $\mu \textrm{m}$ 크기의 원소분말을 이용하여 제조한 경우, 두 조성 모두에서 약 70$\mu$m 의 결정립크기를 얻을 수 있었으며, 조성에 따라 상온에서 오스테나이트 단상 혹은 마르텐사이트 단상을 나타냄을 확인하였다.

Al-Zn-Mg-Cu-(Sc) 합금의 석출특성 (Precipitation Behavior of Al-Zn-Mg-Cu-(Sc) Alloy)

  • 최갑송;문호정;우기도
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.257-261
    • /
    • 2006
  • Scandium(Sc) in Al-Zn-Mg-Cu based Al alloy on precipitation phenomenon was compared to a 7001(Al-7.2%Zn-3.2%Mg-1.8%Cu) Al alloy. GP zone and ${\eta}^{\prime}$ phases were the main strengthening phases at low aging temperature under $100^{\circ}C$, but ${\eta}^{\prime}$ and $Al_3Sc$ phases were the main strengthening phases at high aging temperature above $1600^{\circ}C$ in Sc added 7000(Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr) Al alloy. With the addition of 0.1%Sc in 7000 Al alloy, the activation energy for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phase decreased compared to the 7001 Al alloy. This result indicates that the Sc accelerated the precipitation for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phases in 7000 Al alloy. Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr-0.1 Sc alloy has higher strength than 7001 Al alloy, which has high strength.

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • 윤관혁;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리 (RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate)

  • 김대환;심성용;김영화;임수근
    • 한국주조공학회지
    • /
    • 제29권6호
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis

  • Jung, Heon;Yang, Dae-Ryook;Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1241-1246
    • /
    • 2010
  • Ternary Cu/ZnO/$Al_2O_3$ catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/$Al_2O_3$ was maximized to be 30.6 $m^2$/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/$Al_2O_3$. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 $m^2/g_{cat}$ was to be 2.67 ${\pm}$ 0.27 mmol/$m^2$.h in methanol synthesis at the condition of $250^{\circ}C$, 50 atm and 12,000 mL/$g_{cat}$. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/$Al_2O_3$. The pH of the precipitate solution during the aging time can be maintained at 7 by $CO_2$ bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.