• Title/Summary/Keyword: Cu-S

Search Result 3,557, Processing Time 0.032 seconds

Structural and Electrical Properties of $CuInS_{2}$ Thin Films ($CuInS_{2}$ 박막의 구조 및 전기적 특성)

  • Kim, Seong-Ku;Park, Gye-Choon;Yoo, Yong-Tek
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.78-82
    • /
    • 1994
  • Single-phase $CuInS_{2}$ thin film were prepared by E-beam deposition and the effects of its annealing were investigated. The S/In/Cu was stacked from S, In and Cu by EBE method and then, In the nitrogen atmosphere, the stacked layer were annealed to convert chalcopyrite $CuInS_{2}$ thin films. and that result we obtained p-type Chalcopyrite $CuInS_{2}$ thin films, Its resistivity was $0.03{\sim}0.007{\Omega}cm$, Hall mobility was $0.07{\sim}0.1cm^{2}V^{-1}S^{-1}$ and Hall concentration was $10^{20-21}cm^{-3}$, respectively.

  • PDF

Luminescent Characteristics of ZnS:Mn,Cu Yellow Phosphors for White Light Emitting Diodes (백색 LED용 ZnS:Mn,Cu 황색형광체의 발광특성)

  • Yu, Il;Lee, Ji-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.627-631
    • /
    • 2010
  • ZnS:Mn yellow phosphors doped with Cu for white light emitting diodes were synthesized by solid state reaction method. The optical properties and structures of ZnS:Mn,Cu phosphors were investigated by x-ray diffraction, photoluminescence, and scanning electro microscopy. Photoluminescence excitation spectra originated from $Mn^{2+}$ were ranged from 450 nm to 500 nm. The yellow emission at around 580 nm was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions in ZnS:Mn,Cu phosphors. The highest photoluminescence intensity of the phosphors under 405 nm excitation was obtained at Cu concentration of 0.02 mol%. The enhanced photoluminescent intensity in the ZnS:Mn,Cu phosphors was interpreted by energy transfer from Cu to Mn.

Research of luminescent characteristics of ZnS:CuCl powder electroluminescent device according to the doping concentration of CuCl and frequency of the applied voltage (ZnS:Cu,Cl 후막형 전계 발광 소자의 CuCl 첨가량과 인가 전압의 진동수에 따른 발광 특성 연구)

  • Park, Yong-Kyu;Sung, Hyun-Ho;Cho, Whang-Sin;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.22-25
    • /
    • 2000
  • ZnS:Cu,Cl 형광체의 여기 및 발광 스펙트럼 측정 결과 주게인 $Cl^-$ 이온과 받게인 $Cu^+$ 이온 사이의 흡수와 발광에 기인하는 peak과 국소화된 발광 중심인 $(CU_2)^{2+}$ 이온의 흡수와 발광에 기인하는 peak이 관측되었다. CuCl의 첨가량이 증가함에 따라 $Cu^+$ 이온의 농도가 증가하게 되어 $(Cu_2)^{2+}$ 이온에 기안하는 발광으로부터 공명 에너지 전달 (Resonant Energy Transfer)의 확률이 높아지기 때문에 513 nm를 중심으로 하는 발광의 세기가 증가하게 된다. 자체 제작한 ZnS:Cu,Cl 형광체를 이용하여 제작한 소자의 휘도 측정결과 400 Hz, 100 V 에서 CuCl 의 첨가량이 0.2 mole% 일 때 휘도가 최대였고, 진동수가 증가함에 따라 휘도가 포화되는 현상이 나타났다. CuCl의 첨가량이 증가함에 따라 513 nm를 중심으로 하는 발광이 강해지고 CIE 좌표값이 녹색영역으로 이동하게 된다. 진동수가 증가하면 인가된 전압의 유지 시간이 짧아지게 되어 발광의 감쇄시간이 긴 513 nm를 중심으로 하는 발광보다 감쇄시간이 짧은 458 nm를 중심으로 하는 발광이 강해지게 되고, CIE 좌표값이 청색영역으로 이동하게 된다.

  • PDF

Copper Sulfide Nanowires for Solar Cells (태양전지용 $Cu_2S$ 나노와이어의 제작 및 특성분석)

  • Lim, Young-Seok;Kang, Yoon-Mook;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.166-169
    • /
    • 2006
  • We fabricated hexagonal copper sulfide $Cu_2S$ nanowires to obtain a larger contact area of $Cu_2S/CdS$ solar cell. Copper sulfide nanowires were grown on Cu foil at room temperature by gas-sol id reaction. The size, density and shape of nanowires seemed to be affected by the change or reaction time temperature, crystallographic orientation of Cu foil, and molar ratio of the mixed gas. We controled the length and the diameter of the nanowires and we obtained suitable nanowire arrays which has fitting size for uniform deposition with n-type CdS. CdS layer was deposited on the nanowire array by electrodeposition and it seemed to be uniform. The $Cu_2S/CdS$ nanowires/CdS junction showed diode characteristics, A large contact area is expected with the $Cu_2S/CdS$ nanowire structure as compared with the $Cu_2S/CdS$ thin film.

  • PDF

Electrical and Structural Properties of $CuInS_2$ thin films fabricated by EBE (Electrical Beam Evaporator) Method (전자빔 증착기로 제조된 $CuInS_2$ 박막의 전기적,구조적 특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Park, Joung-Yun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.49-51
    • /
    • 2006
  • Ternary chalcopyrite $CuInS_2$ thin film material is very promising for photovoltaic. Power generation because of its excellent optical and semiconductor properties, $CuInS_2$ thin films were performed from S/In/Cu/SLG stacked elemental layer (SEL) method with post annealing treatment. $CuInS_2$ thin films were appeared from 0.84 to 1.27 of Cu/In composition ratio and sulfur composition ratios of $CuInS_2$ thin films fabricated. Analysis of the optical energy band gap of $CuInS_2$ value of l.5eV interior and exterior.

  • PDF

Study on the Cu/polyimide interface using XPS: Initial growth of Cu sputter-deposited on the polyimide at room temperature (I) (XPS를 이용한 Cu/Polyimide 계면에 관한 연구 : 상온에서 증착한 Cu의 초기성장과정(I))

  • 이연승;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.187-193
    • /
    • 1997
  • We investigated the initial growth mode of Cu deposited on polyimide at room temperature using x-ray photoelectron spectroscopy. We could find that when Cu is sputter-deposited on the polymide, Cu-N-O complex of strong interaction is mainly formed first, Cu-oxide of weak interaction is formed successively, and then finally metallic Cu grow. From these results, we could conclude that Cu/polyimide interface consists of Cu-N-O complex and Cu-oxide.

  • PDF

Synthesis of ZnS : Cu nano-crystals and structural and optical properties (ZnS : Cu nano 업자의 합성 및 구조적.광학적 특성)

  • 이종원;이상욱;조성룡;김선태;박인용;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2002
  • In this study, ZnS: Cu nano-crystals are synthesized by solution synthesis technique (SST). The structural properties such as crystal structure and particle morphology, and the optical properties such as light absorption/transmittance, energy bandgap, and photoluminescence (PL) excitation/emission are investigated. In an attempt to realize the Cu-doping easiness, the synthesis temperature (~$80^{\circ}C$) is applied to the synthesis bath, and the thiourea is used as sulfur precursor, unlike other general chemical synthesis route. Both undoped ZnS and ZnS : Cu nano-crystals have the cubic crystal structure and have the spherical particle shape. The position of light absorption edge is ~305 nm, indicating the occurrence of quantum size effect. The PL emission intensity and line-width are maximum and minimum, respectively, for Cu-doping concentration 0.03M. In particular, the dependence of PL intensity and line-width on the Cu-doping concentration for ZnS : Cu nano-crystals synthesized by SST is reported for the first time in this study. Experimental results of the absorption edge and the PL excitation show that the main emission peak of ZnS : Cu nano-crystals (~510 nm) in this study is due to the radiative recombination center in the energy bandgap induced by Cu dopant.

Study on the Cu/Polyimide interface using XPS: Initial growth of Cu sputter-deposited on the polyimide at high temperature (II) (XPS를 이용한 Cu/Polyimide의 계면에 관한 연구: 고온에서 증착한 Cu의 초기성장과 정(II))

  • 이연승;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • We investigated the initial growth mode of Cu deposited on polyimide at high temperature($350^{\circ}C$) using x-ray photoelectron spectroscopy. We could find that when Cu is sputter-deposited on the polyimide at high temperature, Cu-C-N complex is formed first, Cu-N-O complex and Cu-oxide are mainly formed successively, and then funally metallic Cu grows. In the chemical reaction point of view, the interface of Cu/polyimide at high temperature is than that at room temperature.

  • PDF

Synthesis and Characterization of CuInS2 Semiconductor Nanoparticles and Evolution of Optical Properties via Surface Modification (CuInS2 나노 반도체 합성 및 표면 개질을 통한 광학적 효율 분석 연구)

  • Yang, Hee-Seung;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.177-181
    • /
    • 2012
  • Copper composite materials have attracted wide attention for energy applications. Especially $CuInS_2$ has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. $CuInS_2$ nanoparticles could make it possible to develop color-tunable $CuInS_2$ nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, $CuInS_2$ nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of $CuInS_2$ nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated $CuInS_2$ were observed by transmission electron microscopy (TEM).

A Study on Properties of $CuInS_{2}$ thin films by Cu/In ratio (Cu/In 비에 따른 $CuInS_{2}$ 박막의 특성에 관한 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.326-329
    • /
    • 2007
  • $CuInS_{2}$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_{2}$ thin films with non-stoichiometry composition. $CuInS_{2}$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/ln/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}$ [$cm^{-3}$], 312.502 [$cm^{2}/V{\cdot}s$] and $2.36{\times}10^{-2}$ [${\Omega}{\cdot}cm$], respectively.

  • PDF