• 제목/요약/키워드: Cu-Cr alloy

검색결과 109건 처리시간 0.026초

2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구 (A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

Cu-Cr 합금박막의 필 접착력과 소성변형 (Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films)

  • 이태곤;임준홍;김영호
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Cu, Cr 등 천이원소가 첨가된 Al-1.4Mn-1.0Zn 합금을 심재로 하여 제조된 콘덴서 핀용 알루미늄 클래드 박판의 특성 (Properties of Aluminum Clad Sheets for Condenser Fins Fabricated with Transition Elements(Cu, Cr) added to Al-1.4Mn-1.0Zn Base Alloys)

  • 어광준;김형욱;이윤수;오영미;김동배
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.386-391
    • /
    • 2014
  • In the current study, Al-Mn-Zn alloys are strip-cast and used as the base alloy for the core of aluminum clad sheets used in automotive condenser fins. Transition elements such as Cu and Cr are added to the base core alloy in order to improve the properties of the clad sheets. The AA4343/Al-Mn-Zn-X(X: Cu, Cr)/AA4343 clad sheets are fabricated by roll bonding and further cold-rolled to a thickness of 0.08 mm. Clad sheets were intermediately annealed during cold rolling at $450^{\circ}C$ in order to obtain 40% reduction at the final thickness. Tensile strength and sag resistance of the clad sheets are improved by Cu additions to the core alloy, while corrosion resistance is also increased. Cr-additions to the clad sheets enhance sag resistance and provide low enough corrosion, although tensile strength is not improved. The effect of Cu and Cr additions on the properties of the clad sheets is elucidated by microstructural analysis.

플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구(I) -후막 표면 합금화층의 형성조건과 그 조직- (Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (I))

  • 이규천;;강원석;이영호
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.85-101
    • /
    • 1994
  • Effect of Cr, Cu and Ni metal powders addition on the alloyed layer of aluminum alloy (AC2B) has been investigated with the plasma transferred arc (PTA) overlaying process. The overlaying conditions were 125-200A in plasma arc current, 150mm/min in process speed and 5-20g/min in powder feeding rate. Main results obtained are summarized as follows: 1) It was made clear that formation of thick surface alloyed layer on aluminum alloy is possible by PTA overlaying process. 2) The range of optimum alloying conditions were much wider in case of Cu and Ni powder additions than the case of Cr powder addition judging from the surface appearance and the bead macrostructure. 3) Alloyed layer with Cu showed almost the homogeneous microstructure through the whole layer by eutectic reaction. alloyed layers with Cr and Ni showed needle-like and agglomerated microstructures, the structure of which has compound layer in upper zone of bead by peritectic and eutectic-peritectic reactions, respectively. 4) Microconstituents of the alloyed layer were analyzed as A1+CrA $l_{7}$ eutectics, C $r_{2}$al sub 11/, CrA $l_{4}$, C $r_{4}$A $l_{9}$ and C $r_{5}$A $l_{*}$ 8/ for Cr addition, Al+CuA $l_{2}$(.theta.) eutectics and .theta. for Cu addition, and Al+NiA $l_{3}$ eutectics. NiA $l_{3}$, N $i_{2}$A $l_{3}$ and NiAl for Ni addition. 5) Concerning defect of the alloyed layer, many blow holes were seen in Cr and Ni additions although there was lesser in Cu addition. Residual gas contents in blow hole for Cu and Ni alloyed layer were confirmed as mainly $H_{2}$ and a littie of $N_{2}$ Cracking was observed in compound zone of the alloyed layer in case of Cr and Ni addition but not in Cu alloyed layer.r.r.

  • PDF

고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성 (Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process)

  • 안인섭;박동규;안광복;신승목
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질 (Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling)

  • 이성희;한승전
    • 한국재료학회지
    • /
    • 제26권1호
    • /
    • pp.8-12
    • /
    • 2016
  • Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.

A surface chemical analysis strategy for the microstructural changes in a CuAgZrCr alloy cast under oxidation conditions

  • Ernesto G. Maffia;Mercedes Munoz;Pablo A. Fetsis;Carmen I. Cabello;Delia Gazzoli;Aldo A. Rubert
    • Advances in materials Research
    • /
    • 제13권2호
    • /
    • pp.141-151
    • /
    • 2024
  • The aim of this work was to determine the behavior of alloy elements and compounds formed during solidification in the manufacturing process of the CuAgZrCr alloy under an oxidizing environment. Bulk and surface analysis techniques, such as Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Raman and X-ray diffraction (XRD) were used to characterize the phases obtained in the solidification process. In order to focus the analysis on the on grain boundary interface, partial removal of the matrix phase by acid attack was performed. The compositional differences obtained by SEM-EDX, Raman and XPS on post-manufacturing materials allowed us to conclude that the composition of grain boundaries of the alloy is directly influenced by the oxidizing environment of alloy manufacturing.

Cu-18wt% Cr 합금박막과 폴리이미드사이의 접착력 : 열처리 영향 (Adhesion between Cu-18wt% Cr Alloy Film and Polyimide : Effect of Heat Treatment)

  • 임준홍;김영호;한승희
    • 한국표면공학회지
    • /
    • 제26권6호
    • /
    • pp.327-333
    • /
    • 1993
  • The effect of heat treatment on the adhesion between Cu-18wt% Cr film and polyimide has been studied by using T-peel test, AES, and XRD. Cu-18wt% Cr alloy and pure Cu films were sputter deposited onto pol-yimide. Cu was electroplated before and after heat treatment at $400^{\circ}C$ for 0.5 hr and 2 hrs respectively. The adhesion of metal film onto polyimide was considerably good before heat treatment, but heat treatment re-duced the peel adhesion strength in all specimens. The reduction in adhesion in adhesion strength values in the specimens which were plated after heat treatment was mainly due to Cr-O rich pahse formed in the metal/polyimide in-terface. In the specimens which were heat treated after plating, the enhanced ductility in the metal films con-tributes the peel adhesion strength by increasing the amount of deformation in metal strips.

  • PDF