• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.029 seconds

Tetramethyl orthosilicate(TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (I) - Effect of the Manufacturing Condition and the Composition of Contact Mass on TMOS Synthesis - (구리 촉매하에서 규소와 메탄올의 반응에 의한 Tetramethyl orthosilicate (TMOS) 합성(제1보) - 접촉물질의 제조방법 및 구성성분이 TMOS 합성에 미치는 영향 -)

  • Soh, Soon-Young;Han, Kee-Doo;Won, Ho-Youn;Chun, Yong-Jin;Lee, Bum-Jae;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.252-258
    • /
    • 1999
  • Tetramethyl orthosilicate (TMOS) was obtained by the direct synthesis of methanol with metallic silicon including copper compound as a catalyst and zinc compound as a promoter. The effects of the preheating temperature and the preparation method of the contact mass on TMOS synthesis were investigated. The composition effects of the contact mass which was composed of metallic silicon with copper catalyst and various metallic halide promoters including Zn, Sn or Cd compound were studied also. The best performance on TMOS synthesis was observed on a mixed bed reactor containing metallic silicon preheated with CuCl as a catalyst and $ZnCl_2$ as a promoter. When Cu/Si = 7 wt %, Zn/Cu = 7 wt % was mixed in a slurry phase and activated into contact mass at $380^{\circ}C$, the average selectivity was 87.2% in the silicon consumption of 69.2% at $220^{\circ}C$.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Effects of Bonding Conditions on Joint Property between FPCB and RPCB using Thermo-Compression Bonding Method (열압착법을 이용한 경.연성 인쇄회로기판 접합부의 접합 강도에 미치는 접합 조건의 영향)

  • Lee, Jong-Gun;Ko, Min-Kwan;Lee, Jong-Bum;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2011
  • We investigated effects of bonding conditions on the peel strength of rigid printed circuit board (RPCB)/ flexible printed circuit board (FPCB) joints bonded using a thermo-compression bond method, The electrodes on the FPCB were coated with Sn by a dipping process. We confirmed that the bonding temperature and bonding time strongly affected the bonding configuration and strength of the joints. Also, the peel strength is affected by dipping conditions; the optimum dipping condition was found to be temperature of $270^{\circ}C$ and time of 1s. The bonding strength linearly increased with increasing bonding temperature and time until $280^{\circ}C$ and 10s. The fracture energy calculated from the F-x (Forcedisplacement) curve during a peel test was the highest at bonding temperature of $280^{\circ}C$.

On-site Investigation of Hazardous Substances in Floor Dust of Several Primary Schools (일부 초등학교 바닥 먼지내 포함하고 있는 유해물질 성분에 대한 현장 평가)

  • Kim, Ki Youn;Kim, Hyeon Tae;Lee, Kwon Seob
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.478-483
    • /
    • 2014
  • Objectives: The main objective of this study is to assess the levels of hazardous substances in floor dust in primary schools located in the city of Busan in Korea. Materials and Methods: An on-site investigation of three primary schools was performed between April and May 2013. The hazardous substances measured in this study were 14 heavy metals (Cu, Fe, Pb, Mn, Ni, Zn, Cr, Cd, As, Al, Sn, Co, Mo and Si) and the biological agents were bacteria, fungi and endotoxin). Results: Among the heavy metals, Cd, Co, Pb and Cr were not detected in the floor dust from the three primary schools. The mean levels of other heavy metals were as follows: $20({\pm}10)ng/cm^2$ for As, $30({\pm}20)ng/cm^2$ for Al, $5({\pm}4)ng/cm^2$ for Sn, $20({\pm}20)ng/cm^2$ for Mo, $1,340({\pm}620)ng/cm^2$ for Si, $110({\pm}100)ng/cm^2$ for Cu, $240({\pm}50)ng/cm^2$ for Fe, $30({\pm}30)ng/cm^2$ for Mn, $10({\pm}10)ng/cm^2$ for Ni, and $50({\pm}30)ng/cm^2$ for Zn. It was found that mean concentrations of bacteria, fungi and endotoxin in the floor dust of primary schools were $4.7{\time}10^7({\pm}2.2{\time}10^7)cfu/cm^2$, $6.3{\time}10^6({\pm}6.4{\time}10^6)cfu/cm^2$, and $8,140({\pm}5,801)EU/cm^2$, respectively. The predominant species identified in the floor dust of the primary schools were Pseudomonas spp. for bacteria and Penicillium spp.,Cladosporidium spp.,and Aspergillus spp. for fungi, which would be somewhat similar to the microbial distribution pattern of other general environments. Conclusions: Based on the results obtained from this study, the levels of heavy metals, microbes and endotoxin distributed in the floor dust of primary school were higher than those reported for other general facilities. Thus, preventive measures should be prepared for the health care of children.

The fabrication and characterization of hard rock cutting diamond saw (석재가공용 다이아몬드 톱의 제조 및 특성)

  • Lee Hyun-Woo;Jeon Woo-yong;Lee Oh-yeon;Seol Kyeong-won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.412-420
    • /
    • 2004
  • The purpose of the present study is to determine an optimum composition using cheaper powders keeping with high performance of hard rock cutting diamond saw blade. With 50Fe-20(Cu . Sn)-30Co specimen, a part of Co was replaced by Ni(5%, 10%, and 15%, respectively). These specimens were hot pressed and sintered for predetermined time at various temperature. Sintering is performed by two different methods of temperature controlled method and specimen dimension controlled method. In order to determine the property of the sintered diamond saw blade, 3 point bending tester, X-ray diffractometer, and SEM were used. As the Co in the bond alloy was replaced by Ni, the hardness of the specimen increased. Thus the 50Fe-20(CuㆍSn)-15Co-15Ni specimen showed the maximum hardness of 104(HRB). The results of 3 point bending test showed that flexure strength decreased along with increase in Ni content. This is attributed to the formation of intermetallic compound(Ni$_{x}$Sn) determined by X-ray diffraction. The fracture surface after 3 point bending test showed that diamond was fractured in the specimen containing 0%, 5%, and 10%Ni, and the fracture occurred at the interface between diamond and matrix in the specimen containing 15%Ni. The cutting ability test showed that the abrasive property was not changed in the specimen containing 0%, 5%, and 10%Ni. The optimum composition determined in this study is 50Fe-20(CuㆍSn)-20Co-10Ni.

Studies on the Enzymatical Properties of Streptomyces sp. S-45 Isolated from Soil (토양(土壤)에서 분리(分離)한 Streptomyces sp. s-45의 효소학적(酵素學的) 성질(性質)에 관한 연구(硏究))

  • Kim, Yeong-Yil;Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.129-134
    • /
    • 1988
  • Enzymatical properties of Streptomyces sp. S-45 producing chitinase and ${\beta}$-1.3-glucanase isolated from soil were investigated. Chitinase activity was 3.01(U/ml) and ${\beta}$-1.3-glucanase activity was 2.49(U/ml). The optimum medium for mycolytic enzyme production of strain was composed of 0.7% colloidal chitin, 0.3% glucose, 0.5% asparagine, 0.2% peptone, 0.01% NaCl, 0.01% $K_2HPO_4$ and 0.01% $MgSO_4{\cdot}7H_2O$ in intial pH 7.0. The optimal condition for mycolytic enzyme activities were: pH 6.5-7.0, $45-50^{\circ}C$. Enzyme activities were activated by metal ion as $10^{-2}M\;Co^{{+}{+}}$, $Cu^{{+}{+}}$, $Mn^{{+}{+}}$, $Al^{{+}{+}{+}}$ and $10^{-3}M\;Sn^{{+}{+}}$ but $Ag^{{+}{+}}$, $Hg^{{+}{+}}$ inhibited.

  • PDF

Scientific Analysis of Gilt-Bronze Plaquettes with Buddhist Images(Panbul) from Anapji Pond, Gyeongju (안압지 금동판불의 과학적 분석)

  • Yu, Heisun;Park, Haksoo;Shin, Yongbi
    • Conservation Science in Museum
    • /
    • v.8
    • /
    • pp.49-69
    • /
    • 2007
  • This is about the scientific analysis of the 10 items of the gilt-bronze Panbul excavated from Anapji, Gyeongju. First, the composition of the Panbul was confirmed, using X-ray fluorescence spectrometer (XRF), and the patinas covering the surface of the Panbul were analyzed, using X-ray diffractometer (XRD). And the micro structures and gilt layer of the Panbul were investigated, using microscope and scanning electron microscope with energy dispersive spectrometer (SEM/EDS), and in order to investigate the internal conditions of the Panbul, X-radiography was conducted. As the result, it is found out that the material of the Panbul excavated from Anapji was the bronze of copper (86~95%) and tin (4~12%), and coated with gold. And cuprite (Cu2O) was detected from red patina of the gilt-bronze Panbul, and chalcocite(Cu2S) also was detected from the black patina. As the result of the observation of the micro structure through microscope, it is estimated that it was manufactured, using the wax molding method, and, judging from the fact that the thickness of gilt layer was not even, and that the groove had been filled, it was presumed that the amalgam coating method had been used, but some questions still remain, because mercury was not detected. Lastly, through the X-radiography, it was observed that the tiny round spots existed, which was presumed to have been generated during the casting.

A Study on the Electrical Discharge Machining Tap by using Cu Electrodes of the Cold-Work Tool Steel (냉간 금형용 공구강의 Cu 전극을 이용한 방전 탭에 관한 연구)

  • Lee, Eun-Ju;Park, In-Soo;Kim, Hu-Kwon;Wang, Duck-Hyun;Chung, Han-Shik;Lee, Kwang-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.131-136
    • /
    • 2016
  • Currently, an EDM tapping procedure has comprised some parts of the engraving discharge process for the press die. Usually, tapping has been used in cases where we are unable to mechanically machine using steelwork processes due to an increase in the hardness of a material after heat treatment in relation to a design change or missing process. Here, we analyze the influence of discharge tap shape on discharge time, discharge current, and the number of repetition conditions when a cold-work tool steel (STD11) has been treated with a discharge tapped by a screw-shaped cu electrode. The most important influence on processing condition has been determined to be the number of discharge repetitions. As this number increases, the angle reduction of a thread closes to an angle of the electrode via a power generation reduction. The optimal combination of conditions has been determined to be three discharge repetitions, $180{\mu}s$ of discharge time (same as existing regulations), and 25.4A of peak current. A 0.2749db advantage has emerged after comparing between this combination of optimal conditions and the SN rate of existing regulations.

A STUDY ON THE BONDING BEHAVIOR OF PALLADIUM-BASED ALLOYS FOR CERAMO-MENTAL RESTORATION (도재 소부용 팔라디움계 합금의 도재 결합양상에 관한 연구)

  • Chang, Hoon;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.143-179
    • /
    • 1989
  • To observe the bonding behavior of palladium-based alloys to porcelain; 1. Pd-Co binary alloy with the higher cobalt content, 2. Pd-Co binary alloy with the lower cobalt content, 3. Pd-Ag-Sn ternary alloy, 4. Pd-Ag binary alloy, 5. Pd-Cu-Au ternary alloy and 6. Pd-Cu binary alloy were made as 6 groups of experimental alloys. Each group of alloy was divided into 4 sub-groups such as one sub-group that was not degassed and three sub-groups that degassed for 5 minutes, 10 minutes and 15 minutes. On each specimen, weight changes after degassing, morphological changes of oxide layer by changing the degassing time, compositional changes at metal-ceramic interface and bond strength of metal-ceramic measured with planar shear test were observed and compared. The results of the present study allow the following conclusions to be drawn: 1. The alloy showing the greatest bond strength was Pd-Cu alloy without gold and bond strength was decreased by alloying gold to them. 2. Although Pd-Co alloy showed the most prominent oxidation behavior, bond strength of them to porcelain was not greatly high by the formation of porosities at metal-ceramic interfaces. 3. Likewise tin, cobalt formed the peaks on line profiles at metal-ceramic interface, however copper did not exhibit such peaks on line profiles. 4. Mainly, oxide layer on Pd-Co alloy was composed with cobalt, and for Pd-Co alloy with higher cobalt content the rise of bond strength was not significant by increased degassing time. 5. On Pd-Ag alloy not containing tin, during degassing for 15 minutes silver content was increased at metal-ceramic interface. 6. As an oxidized element, tin formed the oxide layers that widen their area by increasing the degassing time, while cobalt and copper showed the morphological changes of particle or crystal on oxide layer.

  • PDF

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).