• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.024 seconds

Binder-free Sn/Graphene Nanocomposites Prepared by Electrophoretic Deposition for Anode Materials in Lithium Ion Batteries

  • Bae, Eun Gyoung;Hwang, Yun-Hwa;Pyo, Myoungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1199-1204
    • /
    • 2013
  • Nanocomposites consisting of Sn nanoparticles and graphene oxide (GO) were electrophoretically deposited onto Cu current collectors that was used for anodes in Li ion batteries (LIBs). In order to optimize the electrochemical performance of nanocomposites as an anode material by controlling the oxygen functionality, the GO was subjected to $O_3$ treatment prior to electrophoretic deposition (EPD). During thermal reduction of the GO in the nanocomposites, the Sn nanoparticles were reduced in size, along with the formation of SnO and/or $SnO_2$ at a small fraction, relying on the oxygen functionalities of the GO. The variation in the duration of time for the $O_3$ irradiation resulted in a small change in total oxygen content, but in a significantly different fraction of each functional group in the GO, which influenced the Sn nanoparticle size and the amount of SnO (and/or $SnO_2$). As a result, the EPD films prepared with the GO that possessed the least amount of carboxylic groups (made by treating GO in an $O_3$ environment for 3 h) showed the best performance, when compared with the nanocomposites composed of untreated GO or GO that was $O_3$-treated for a duration of less than 3 h.

Bumpless Interconnect System for Fine-pitch Devices (Fine-pitch 소자 적용을 위한 bumpless 배선 시스템)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • The demand for fine-pitch devices is increasing due to an increase in I/O pin count, a reduction in power consumption, and a miniaturization of chip and package. In addition non-scalability of Cu pillar/Sn cap or Pb-free solder structure for fine-pitch interconnection leads to the development of bumpless interconnection system. Few bumpless interconnect systems such as BBUL technology, SAB technology, SAM technology, Cu-toCu thermocompression technology, and WOW's bumpless technology using an adhesive have been reviewed in this paper: The key requirements for Cu bumpless technology are the planarization, contamination-free surface, and surface activation.

A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder (Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구)

  • Jeon, Yu-Jae;Son, Sun-Ik;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

Development of SiC Composite Solder with Low CTE as Filling Material for Molten Metal TSV Filling (용융 금속 TSV 충전을 위한 저열팽창계수 SiC 복합 충전 솔더의 개발)

  • Ko, Young-Ki;Ko, Yong-Ho;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.68-73
    • /
    • 2014
  • Among through silicon via (TSV) technologies, for replacing Cu filling method, the method of molten solder filling has been proposed to reduce filling cost and filling time. However, because Sn alloy which has a high coefficient of thermal expansion (CTE) than Cu, CTE mismatch between Si and molten solder induced higher thermal stress than Cu filling method. This thermal stress can deteriorate reliability of TSV by forming defects like void, crack and so on. Therefore, we fabricated SiC composite filling material which had a low CTE for reducing thermal stress in TSV. To add SiC nano particles to molten solder, ball-typed SiC clusters, which were formed with Sn powders and SiC nano particles by ball mill process, put into molten Sn and then, nano particle-dispersed SiC composite filling material was produced. In the case of 1 wt.% of SiC particle, the CTE showed a lowest value which was a $14.8ppm/^{\circ}C$ and this value was lower than CTE of Cu. Up to 1 wt.% of SiC particle, Young's modulus increased as wt.% of SiC particle increased. And also, we observed cross-sectioned TSV which was filled with 1 wt.% of SiC particle and we confirmed a possibility of SiC composite material as a TSV filling material.

The metallurgical Analysis of a Bronze-Lumps from the Third Building Site at Neungsan-ri Temple Site (능산리절터 제3건물지 출토 청동덩어리에 대한 금속학적 분석)

  • Rho, Tae-Cheon
    • Journal of Conservation Science
    • /
    • v.10 no.1 s.13
    • /
    • pp.31-37
    • /
    • 2001
  • The metallurgical investigation of four lumps of bronze from the third building site of the northern workshop site at the Neungsan-ri temple site in Buyeo was performed. The microstructures of a section of sample was observed by SEM and qualitative and quantitative analysis of the sample was performed by EDS. The results are as follows: Sample 1 of the lump of bronze from northern workshop site in the third building site at Neungsan-ri temple site and sample 2 are speculated to be low-quality bronze resulting from refinery of matte which formed on the process of bronze refinery. Sample 3 is speculated as a lump of bronze which is one of Cu-Sn system and the one made by alloy only with pure bronze and tin on the process of bronze refinery. Sample 4 is confirmed as a lump of bronze which is one of Cu-Sn-Pb system from alloy of tin and lead into pure bronze. It is believed that the third building site at Neungsan-ri temple site in Buyeo produced bronze matte by refinery of copper ore or produced low-quality bronze by melting matte imported from outside.

  • PDF

Effect of Shearing Speed on High Speed Shear Properties of Sn1.0Ag0.5Cu Solder Bump on Various UBM's (다양한 UBM층상의 Sn0Ag0.5Cu 솔더 범프의 고속 전단특성에 미치는 전단속도의 영향)

  • Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • The effect of shearing speed on the shear force and energy of Sn-0Ag-0.5Cu solder ball was investigated. Various UBM (under bump metallurgy)'s on Cu pads were used such as ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold; Ni/Pd/Au), ENIG (Electroless Nickel, Immersion Gold; Ni/Au), OSP (Organic Solderability Preservative). To fabricate a shear test specimen, a solder ball, $300{\mu}m$ in diameter, was soldered on a pad of FR4 PCB (printed circuit board) by a reflow soldering machine at $245^{\circ}C$. The solder bump on the PCB was shear tested by changing the shearing speed from 0.01 m/s to 3.0 m/s. As experimental results, the shear force increased with a shearing speed of up to 0.6 m/s for the ENIG and the OSP pads, and up to 0 m/s for the ENEPIG pad. The shear energy increased with a shearing speed up to 0.3 m/s for the ENIG and the OSP pads, and up to 0.6 m/s for the ENEPIG pad. With a high shear speed of over 0 m/s, the ENEPIG showed a higher shear force and energy than those of the ENIG and OSP. The fracture surfaces of the shear tested specimens were analyzed, and the fracture modes were found to have closer relationship with the shear energy than the shear force.

The Study on Micro Soldering Using Low-Residue Flux in $N_2$Atmosphere (질소 분위기에서 저잔사 플럭스를 사용한 마이크로 솔더링에 관한 연구)

  • 최명기;정재필;이창배;서창제;황선효
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.7-15
    • /
    • 2000
  • The purpose of this work is to evaluate the solderahility and characteristics of solder joints. Bridge defect of solder joint was examined in natural atmosphere and $N_2$ condition. Consequently, wettability was excellent for each of Sn-Pb plated Cu specimen, Sn plated Cu specimen, and Cu polished in $N_2$ condition. The wetting time in $N_2$ condition was shorter than that of natural atmosphere condition, showing the decreasing values of about 0.2~0.45 seconds. The max. wetting force under the $N_2$ condition was more increasing that of natural atmosphere condition, showing the increasing values of about 1.8~2.8 N. With the result of wetting balance test, the wetting time ($t_2$) and wetting farce according to increasing amount of $N_2$ from 10 1/min to 30 1/min, the wetting time ($t_2$) was reduced about 0.25 second and wetting force was increased about 2.3 N. In non-cleaning flux, when $N_2$ gas is applied, it is compensated to decrease of wettability. In the case of using the $N_2$ gas, the wettability was improved. The reason for improving wettability is due to preventing the formation of dross. The generation rate of bridge in $N_2$ condition decreased than that of natural atmosphere, and when the specimen had a fine pitch, the rate of bridge defects was considerably decreased in $N_2$ condition, showing the decreasing rate of 25~75%.

  • PDF

Printing Morphology and Rheological Characteristics of Lead-Free Sn-3Ag-0.5Cu (SAC) Solder Pastes

  • Sharma, Ashutosh;Mallik, Sabuj;Ekere, Nduka N.;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.83-89
    • /
    • 2014
  • Solder paste plays a crucial role as the widely used joining material in surface mount technology (SMT). The understanding of its behaviour and properties is essential to ensure the proper functioning of the electronic assemblies. The composition of the solder paste is known to be directly related to its rheological behaviour. This paper provides a brief overview of the solder paste behaviour of four different solder paste formulations, stencil printing processes, and techniques to characterize solder paste behaviour adequately. The solder pastes are based on the Sn-3.0Ag-0.5Cu alloy, are different in their particle size, metal content and flux system. The solder pastes are characterized in terms of solder particle size and shape as well as the rheological characterizations such as oscillatory sweep tests, viscosity, and creep recovery behaviour of pastes.

Impact of External Temperature Environment on Large FCBGA Sn-Ag-Cu Solder Interconnect Board Level Mechanical Shock Performance

  • Lee, Tae-Kyu
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • The mechanical stability of solder joints in electronic devices with Sn-Ag-Cu is a continuous issue since the material was applied to the industry. Various shock test methods were developed and standardized tests are used in the industry worldwide. Although it is applied for several years, the detailed mechanism of the shock induced failure mechanism is still under investigation. In this study, the effect of external temperature was observed on large Flip-chip BGA components. The weight and size of the large package produced a high strain region near the corner of the component and thus show full fracture at around 200G level shock input. The shock performance at elevated temperature, at $100^{\circ}C$ showed degradation based on board pad designs. The failure mode and potential failure mechanisms are discussed.

Sliding wear behavior of electro-pressure sintered cobalt (통전 가압 소결된 Co 소결체의 마멸 거동)

  • Kang S. H.;Kim T.-W.;Kim Y.-S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.218-221
    • /
    • 2004
  • Dry sliding wear behavior of electro-pressure sintered Co, $Co-20\;wt.\%$ CuSn and $Co-20\;wt.\%$ WC composites were investigated. Wear tests of the materials were carried out using a pin-on-disk wear tester at various loads of 10N-100N under a constant sliding speed condition of 0.38m/s against glass ($83\%\;SiO_2$) beads. Sliding distances were varied with a range of $100m{\sim}600m$. A scanning electron microscopy was used to examine morphologies of worn surfaces, cross-sections, and wear debris. The $Co-20\;wt.\%$ WC composite had the highest and the $Co-20\;wt.\%$ CuSn composite showed the lowest wear resistance among the tested materials. All specimens exhibited low friction coefficients ranging from 0.12 to 0.4 at the applied load of 100N.

  • PDF