• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.024 seconds

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets (화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장)

  • Kim, Jong-IL;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.81-86
    • /
    • 2019
  • Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint (PCB 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 무연솔더 접합부의 기계적 신뢰성에 관한 연구)

  • Kim, Sung-Hyuk;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Ball shear test was performed by test variables such as loading speed and annealing time in order to investigate the effect of surface finishes on the bonding strength of Sn-1.2Ag-0.7Cu-0.4In Pb-free solder. The shear strength increased and the ductility decreased with increasing shear speed. With increasing shear speed, the electroless nickel immersion gold (ENIG) finish showed dominant brittle fracture mode, while organic solderability preservative (OSP) finish showed pad open fracture mode. The shear strength and toughness for both surface finishes decreased with increasing annealing time under the high-speed shear test of 500 mm/s. Typically, the thickness of intermetallic compound increased with increasing annealing time, which means that exposure of brittle fracture became much easier. With increasing annealing time, the both ENIG and OSP finishes exhibited the pad open fracture mode. Overall, ENIG finish showed higher shear strength rather than OSP finish due to its superior barrier stability.

Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP (플라즈마 유기막과 OSP PCB 표면처리의 Sn-Ag-Cu 솔더 접합 특성 비교)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Bang, Jung-Hwan;Park, Nam-Sun;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.25-29
    • /
    • 2014
  • Plasma organic thin film for PCB surface finish is a potential replacement of the conventional PCB finishes because of environment-friendly process, high corrosion-resistance and long shelf life over 1 year. In this study, solder joint properties of the plasma organic surface finish were estimated and compared with OSP surface finish. The plasma surface finish was deposited by chemical vapor deposition from fluorine-based precursors. The thickness of the plasma organic coating was 20 nm. Sn-3.0Ag-0.5Cu (SAC305) solder was used as solder joint materials. From a salt spray test, the plasma organic coating had higher corrosion resistance than the OSP surface finish. The spreadability of SAC305 on plasma organic coating was higher than that on OSP surface finish. SEM and TEM micrographs showed that the interfacial microstructure of the plasma surface finish sample were similar to that of the OSP sample. Solder joint strength of the plasma finish sample was also similar to that of the OSP finished sample.

Color variation of copper glaze with the addition of tin oxide (산화주석 첨가에 따른 동화유약의 발색 변화)

  • No, Hyunggoo;Kim, Soomin;Kim, Ungsoo;Cho, Wooseok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.243-248
    • /
    • 2017
  • In this study copper glaze samples were prepared with varying amount of tin oxide, and the chromatic characteristics of glazes were explained on the results of spectrophotometric, crystalline phase, and microstructural analyses. The red color of copper glaze was dissipated with the addition of tin oxide and turned into achromatic color due to the decrease of CIEab values. Tin oxide homogeneously distributed in the glaze layer interfered with the red color generation coming from the growth of Cu nuclei, and formed an alloy with metal copper around bubbles. This resulted in the decrease of metal copper peak intensity with minor $Cu_2O$ peak. With the 3.79 % tin oxide addition the glaze was appeared as gray due to the black color CuO and Cassiterite $SnO_2$ phases.

Synthesis of Aligned Porous Sn by Freeze-Drying of Tin Chloride/camphene Slurry (염화주석/camphene 슬러리의 동결건조에 의한 방향성 기공구조의 Sn 다공체 제조)

  • Bang, Su-Ryong;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide ($SnO_2$) coated Sn powders. The $SnO_2$ coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at $670^{\circ}C$ in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at $1100^{\circ}C$ for 1 h in a hydrogen atmosphere, showed large pores of about $200{\mu}m$, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, $100{\mu}m$ spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.

Design and Performance Analysis of Environment Friendly Double Core Bullets for Small Arms (친환경 소화기용 탄심 재료 및 2중 구조 설계 분석)

  • Hong, Jun-Hee;Jang, Tak-Soon;Song, Chang-Bin;Kim, Byung-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.264-270
    • /
    • 2011
  • This paper focuses on possibility to design and fabrication new combination of bullet core to substitute current toxic material of heavy metal such as lead by environment-friendly ones. The core is designed as dual structure to manipulate the core center of gravity easily by combining materials, which of basis is tungsten of low cost and easily acquired. Those combinations are W-M series such as W-Cu, W-Sn, W-Cu-Sn, and W-Cu-Ni to target the density of lead, $11.34g/cm^3$ through powder-metallurgy. Out of four, combination of W-Cu-Ni shows the highest compression density of 96% and is confirmed as the most suitable substitution for lead due to the excellent property of matter and sintering. All combination samples is simulated on the PRODAS software for designing and structure analysis by adjusting the center of gravity of dual core samples forward and backward. The simulations confirm the similarity of current bullet core with respect to properties of mass, aero dynamics, and flying stability.

Effects of the Electroless Ni-P Thickness and Assembly Process on Solder Ball Joint Reliability (무전해 Ni-P 두께와 Assembly Process가 Solder Ball Joint의 신뢰성에 미치는 영향)

  • Lee, Ji-Hye;Huh, Seok-Hwan;Jung, Gi-Ho;Ham, Suk-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The ability of electronic packages and assemblies to resist solder joint failure is becoming a growing concern. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder with different electroless Ni-P thickness, with $HNO_3$ vapor's status, and with various pre-conditions. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder interconnection. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. A scanning electron microscopy (SEM) and an energy dispersive x-ray analysis (EDS) confirmed that there were three intermetallic compound (IMC) layers at the SAC405 solder joint interface: $(Ni,Cu)_3Sn_4$ layer, $(Ni,Cu)_2SnP$ layer, and $(Ni,Sn)_3P$ layer. The high speed shear energy of SAC405 solder joint with $3{\mu}m$ Ni-P deposit was found to be lower in pre-condition level#2, compared to that of $6{\mu}m$ Ni-P deposit. Results of focused ion beam and energy dispersive x-ray analysis of the fractured pad surfaces support the suggestion that the brittle fracture of $3{\mu}m$ Ni-P deposit is the result of Ni corrosion in the pre-condition level#2 and the $HNO_3$ vapor treatment.

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis

  • Reyes, Odin;Sanchez, Monica F.;Pal, Mou;Llorca, Jordi;Sebastian, P.J.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.203-214
    • /
    • 2017
  • In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

Reflection Characteristics of Electroplated Deposits on LED Lead frame with Plating Condition (도금인자에 따른 LED 리드프레임 상의 도금층의 반사특성)

  • Kee, SeHo;Kim, Wonjoong;Jung, JaePil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.29-32
    • /
    • 2013
  • The surface roughness and reflectivity of electroless-plated Sn-3.5 wt%Ag on a LED (light emitting diode) lead frame were investigated. Cu electroplating was carried out prior to electroless plating of Sn-3.5Ag to improve the reflectivity of the Sn-3.5Ag deposit. In order to investigate the effect of stirring speed and temperature of the plating solution, surface roughness and reflectivity was measured. The experimental results revealed that the thickness of the deposit layer increased with stirring speed and temperature of the plating solution. Stirring speed is increased from 100 to 300 rpm, the surface roughness was reduced from 0.513 to 0.266 ${\mu}m$, and the reflectivity increased from 1.67 to 1.84 GAM. As temperature of the plating solution increased from 25 to $45^{\circ}C$, the surface roughness reduced from 0.507 to 0.350 ${\mu}m$, and the reflectivity increased from 1.68 to 1.84 GAM.

Effect of BSO addition on Cu-O bond of GdBa2Cu3O7-x films with varying thickness probed by extended x-ray absorption fine structure

  • Jeon, H.K.;Lee, J.K.;Yang, D.S.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.1-4
    • /
    • 2016
  • We investigated the relation between the Cu-O bond length and the superconducting properties of $BaSnO_3$ (BSO)-added $GdBa_2Cu_3O_{7-x}$ (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% $BaSnO_3$ (BSO) added $GdBa_2Cu_3O_{7-x}$ (GdBCO) thin films with varying thickness from $0.2{\mu}m$ to $1.0{\mu}m$ were fabricated by using pulsed laser deposition (PLD) method. The transition temperature ($T_c$) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to $0.8{\mu}m$, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of $T_c$ and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.