• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.02 seconds

The Effect of the Additive Elements Alloying Method on the Corrosion Resistance of Sintered STS 316L (STS 316L 소결재료의 내식특성에 미치는 합금원소 첨가방법의 영향)

  • Kim, Hye Seong;Kim, Yoo Young;Park, Dong Kyu;Ahn, In Shup
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.203-209
    • /
    • 2013
  • In this study, STS 316L powders with 3 wt.% Cu and 1 wt.% Sn known as corrosion-resistance reinforcement elements, are prepared to make different kinds of specimens, in which, 3 wt.% Cu and 1 wt.% Sn are added in different forms by mixing, alloying and fully alloying. After sintering in the same condition, the corrosion resistance, wear resistance and their mechanical properties of specimens are tested respectively. According to the comparison, STS 316L specimen sintered at $1270^{\circ}C$ showed the most excellent mechanical property: HRB 78 (hardness), 1130.7 MPa (RCS), 26.6% (Fraction Wear), It was similar with the specimen made of STS316L and fully alloyed Cu and Sn powders, meanwhile, the latter one appears the best corrosion resistance, 75hrs-salt immersion test results. In addition, the specimens with Cu and Sn powders additive showed relatively worse wear resistance in compared with STS316L specimen.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film

  • Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2012
  • This paper proposes a micro gas sensor for measuring $H_2S$ gas. This is based on a $SnO_2$-CuO multi-layer thin film. The sensor has a silicon diaphragm, micro heater, and sensing layers. The micro heater is embedded in the sensing layer in order to increase the temperature to an operating temperature. The $SnO_2$-CuO multi layer film is prepared by the alternating deposition method and thermal oxidation which uses an electron beam evaporator and a thermal furnace. To determine the effect of the number of layers, five sets of films are prepared, each with different number of layers. The sensitivities are measured by applying $H_2S$ gas. It has a concentration of 1 ppm at an operating temperature of $270^{\circ}C$. At the same total thickness, the sensitivity of the sensor with multi sensing layers was improved, compared to the sensor with one sensing layer. The sensitivity of the sensor with five layers to 1 ppm of $H_2S$ gas is approximately 68%. This is approximately 12% more than that of a sensor with one-layer.

Measurement reliability of irreversible stress/strain limits in Sn-Cu double layer stabilized IBAD/RCE-DR processed GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Bautista, Zhierwinjay;Diaz, Mark Angelo;Shin, Hyung-Seop;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.36-40
    • /
    • 2018
  • In this study, the electromechanical properties in Sn-Cu double layer stabilized GdBCO coated conductor (CC) tapes with and without external lamination under uniaxial tension were examined at 77 K and self-field. Their irreversible stress and strain limits were determined using a loading-unloading scheme based on different critical current ($I_c$) recovery criteria. The repeated tests were performed and statistical estimation was done to check the reproducibility depending on the criterion adopted in evaluating the electromechanical properties. From the results, it showed that the Sn-Cu double-layer stabilized CC tapes have the higher irreversible stress limit, but lower irreversible strain limit as compared to brass laminated ones. Through the repeated tests, it can be found that a small scattering of irreversible limits existed in both CC tape samples. Finally, similar strain sensitivity of $I_c$ in both CC tapes was obtained.

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A.;Ahmadian, F.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1370-1376
    • /
    • 2018
  • The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate

  • Kihal, Rafiaa;Rahal, Hassiba;Affoune, Abed Mohamed;Ghers, Mokhtar
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.206-214
    • /
    • 2017
  • SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.

A Study on Solderability and Interfacial Reaction of Sn-Zn System Solder (Sn-Zn계 땜납의 납땝성 및 계면반응에 관한 연구)

  • Sim, Jong-Bo;Lee, Gyeong-Gu;Lee, Do-Jae
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • Sn-Zn계 solder에서 Zn함량의 변화에 따른 납땜성을 납땜분위기 및 용제를 달리하여 연구하였다. 계면에서의 미세조직 관찰은 열처리온도를 8$0^{\circ}C$와 10$0^{\circ}C$로 달리하여 100일간 열처리한 후 관찰하였다. 젖음성 측정 결과, Zn함량이 증가함에 따라 젖음성은 감소하였고 RMA-용제를 사용한 경우가 R-용제를 사용한 경우에 비해 젖음성이 향상되었다. Sn-9Zn의 접촉각은 약 45도이고, 공기중에서 보다 질소 분위기에서 납땜한 경우가 젖음성 개선을 나타냈다. Sn-9Zn땝납과 Cu기판에서의 계면반응을 XRD, EDS로 분석한 결과 계면화합물은 r상(Cu$_{5}$Zn$_{3}$)으로 구성되어 있음을 알 수 있으며, 시효처리에 따라 접합부의 solder쪽에는 Zn상의 고갈이 나타남을 확인할 수 있었다.

  • PDF

Evaluation of Property and Reliability of Sn3.5Ag and Sn0.7Cu Pb-free Solder Joint by Complex Vibration for Application of Automobile Electric Module (자동차 전장모듈대응을 위한 Sn3.5Ag와 Sn0.7Cu 솔더 접합부의 물리적 특성 및 복합진동을 통한 신뢰성 평가 - 자동차 전장모듈의 접합 신뢰성 연구 (II)-)

Enhancement of the Surface Smoothness of Cu Ribbon for Solar Cell Modules

  • Cho, Tae-Sik;Cho, Chul-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • We studied the relationship between the surface smoothness of the internal Cu ribbon and the morphology of the Sn-Pb plating layer for solar cell modules. A bumpy surface was observed on the surface of the solar ribbon, which caused irregular reflection of light. Large, Pb-rich, primary ${\alpha}$-phases were found below the convex surface of the solar ribbon, passing from the surface of the internal Cu ribbon to the surface of the plating layer. The primary ${\alpha}$-phases heterogeneously nucleated on the convex surface of the Cu ribbon, and then largely grew to the convex surface of the plating layer. The restriction of the primary ${\alpha}$-phase's formation was enabled by enhancing the smoothness of the Cu ribbon's surface; it was also possible to increase the adhesive strength and decrease contact resistance. We confirmed that the solar ribbon's surface smoothness depends on the internal Cu ribbon's surface smoothness.