• 제목/요약/키워드: Cu removal efficiency

검색결과 206건 처리시간 0.028초

콩을 이용한 식물filter에 의한 중금속 제거에 관한 연구 (Removal of Heavy Metals in Wastewater Using Glycine max Merr)

  • 나규환;김순진;신정식;최한영;이장훈
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.105-108
    • /
    • 1997
  • For the removal of heavy metals, Cd, Cu and Cr were used. The initial concentration of Cd and Cu were 1-10 ppm, the removal efficiency of Cd and Cu was 76.2-89.0% and 69.0-79.0%, respectively. The initial concentration of Cr were 1~5 ppm, and the-removal efficiency was low especially at high concentration. In general, the initial concentrations of heavy metals had no relation to the removal efficiency. At the beginning, the removal efficiency was very high, but it was maintained at constant concentration. The trends of accumulations of heavy metals in the stem increased in proportion to the initial concentration. The removal efficiency of heavy metals increased a little bit when nutrients existed in the solution. So that, the initial concentration of Cd and Cu were 1-10 ppm, the removal efficiency of Cd and Cu was 84.8-91.0% and 75.9-82.0%. The initial concentration of Cr were 1-5 ppm, the removal efficiency was 25.0-67.0%.

  • PDF

Parametric study for enhanced performance of Cu and Ni electrowinning

  • Kim, Joohyun;Kim, Han S.;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.201-206
    • /
    • 2019
  • In this study, we performed an electrowinning process for effective removal of metals (Cu and Ni) in solution and their recovery as solid forms. A complete removal of Cu and Ni (1,000 mg/L) was observed during four times recycling test, indicating that our electrowinning system can ensure the efficient metal removal with high stability and durability. In addition, we investigated effect of operation parameters (i.e., concentration of boric acid only for Ni, variation of pH, concentration of electrolyte ($H_2SO_4$), and cell voltage) on the efficiency of metal removal (Cu and Ni) during the electrowinning. The addition of boric acid significantly enhanced removal efficiency of Ni as the concentration of boric acid increased up to 10 g/L. Compared to negligible pH effect (pH 1, 2, and 4) on the Cu removal, we observed the increase in removal efficiency of Ni as the pH increased from 1 to 4. The electrolyte concentration did not significantly influence the removal of Cu and Ni in this study. We also obtained great removal rates of Cu and Ni at 2.5 V and 4.0 V, which were much faster than those at lower voltages. Finally, almost 99% of each Cu and Ni (1,000 mg/L) was selectively removed from the mixture of metals by adjusting pH and addition of boric acid after the completion of Cu removal. The findings in this study can provide a fundamental knowledge about effect of important parameters on the efficiency of metal recovery during the electrowinning.

자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가 (Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments)

  • 오연수;박현성;김동관;이진수;지원현
    • 자원환경지질
    • /
    • 제53권3호
    • /
    • pp.235-244
    • /
    • 2020
  • 폐광산 지역에서 발생하는 광산배수의 오염원소중 하나인 구리(Cu)는 낮은 농도에서도 독성을 지니고 있어 수계환경에 노출되기 전에 처리되어야 한다. 본 연구에서는 경남 고성군 S광산의 갱내수 정화시설의 Cu 제거효율을 개선하기 위해 석회석과 폐상퇴비를 혼합한 자연정화 기반의 반응조를 이용하여 약 9개월 동안 현장 파일럿실험을 수행하였다. 반응조별 유입수 대비 pH 증가량과 Cu 제거효율은 Successive Alkalinity Producing System (SAPS) > Reducing and Alkalinity Producing System (RAPS) > 석회석반응조 순으로 나타났다. SAPS조와 RAPS조에서는 석회석의 영향과 동시에 유기물의 분해로 인한 알칼리도의 부과로 석회석반응조보다 높은 pH 환경을 조성하였다. pH가 증가할수록 Cu 제거효율이 높아지는 결과를 통해 pH 상승이 Cu를 처리하는 주된 기작임을 확인할 수 있었다. 또한 황산염환원박테리아(Sulfate Reduction Bacteria, SRB)가 SAPS조에서 가장 많이 활성화 된 것을 확인 할 수 있어, 황산염환원반응도 Cu를 제거시키는 기작에 관여함을 판단할 수 있었다. 본 연구는 S광산에서 발생하는 광산배수의 특성에 알맞은 맞춤형 정화공정을 도출하기 위해 현장 그대로의 조건에서 실험을 수행한 것에 의의가 있으며, 향후 정화시설의 개선에 있어 공법 선정에 도움을 줄 수 있을 것이다.

세정액에 따른 실리콘 웨이퍼의 Cu 및 Fe 불순물 제거 (Removal of Cu and Fe Impurities on Silicon Wafers from Cleaning Solutions)

  • 김인정;배소익
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.80-84
    • /
    • 2006
  • The removal efficiency of Cu and Fe contaminants on the silicon wafer surface was examined to investigate the effect of cleaning solutions on the behavior of metallic impurities. Silicon wafers were intentionally contaminated with Cu and Fe solutions by spin coating and cleaned in different types of cleaning solutions based on $NH_4OH/H_2O_2/H_2O\;(SC1),\;H_2O_2/HCl/H_2O$ (SC2), and/or HCl/$H_2O$ (m-SC2) mixtures. The concentration of metallic contaminants on the silicon wafer surface before and after cleaning was analyzed by vapor phase decomposition/inductively coupled plasma-mass spectrometry (VPD/ICP-MS). Cu ions were effectively removed both in alkali (SC1) and in acid (SC2) based solutions. When $H_2O_2$ was not added to SC2 solution like m-SC2, the removal efficiency of Cu impurities was decreased drastically. The efficiency of Cu ions in SC1 was not changed by increasing cleaning temperature. Fe ions were soluble only in acid solution like SC2 or m-SC2 solution. The removal efficiencies of Fe ions in acid solutions were enhanced by increasing cleaning temperature. It is found that the behavior of metallic contaminants as Cu and Fe from silicon surfaces in cleaning solutions could be explained in terms of Pourbaix diagram.

표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구 (A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles)

  • 임태숙;조윤철;조장환;최상일
    • 한국환경과학회지
    • /
    • 제25권4호
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

Hydrogel 키토산비드를 이용한 수중의 양이온 중금속과 음이온의 제거 효율 평가 (Removal of both cation and anion pollutant from solution using hydrogel chitosan bead)

  • 안병렬
    • 상하수도학회지
    • /
    • 제32권3호
    • /
    • pp.253-259
    • /
    • 2018
  • Cu(II) can cause health problem for human being and phosphate is a key pollutant induces eutrophication in rivers and ponds. To remove of Cu(II) and phosphate from solution, chitosan as adsorbent was chosen and used as a form of hydrogel bead. Due to the chemical instability of hydrogel chitosan bead (HCB), the crosslinked HCB by glutaraldehyde (GA) was prepared (HCB-G). HCB-G maintained the spherical bead type at 1% HCl without a loss of chitosan. A variety of batch experiment tests were carried out to determine the removal efficiency (%), maximum uptake (Q, mg/g), and reaction rate. In the single presence of Cu(II) or phosphate, the removal efficiency was obtained to 17 and 16%, respectively. However, the removal efficiency of Cu(II) and phosphate was increased to 50~55% at a mixed solution. The maximum uptake (Q) for Cu(II) and phosphate was enhanced from 11.3 to74.4 mg/g and from 3.34 to 36.6 mg/g, respectively. While the reaction rate of Cu(II) and phosphate was almost finished within 24 and 6 h at single solution, it was not changed for Cu(II) but was retarded for phosphate at mixed solution.

Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성 (Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal)

  • 박수진;조미화;김석;권수한
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.737-741
    • /
    • 2005
  • 본 연구에서는 제조한 MCM-41에 Cu의 함량에 따른 NO의 전환율을 고찰하였다. MCM-41은 실리카 원으로 colloid silica를 사용하였고, template로 cetyltrimethylammonium chloride (CTMACl)를 사용하여 수열 합성하였으며, Cu/MCM-41은 Cu(II) acetylacetonate를 사용해서 Cu의 농도를 5, 10, 20 그리고 40%로 변화시켜 제조하였다. 표면 특성은 pH, FT-IR로 분석하였고, 육방배열의 1차원 기공 구조는 XRD로 고찰하였다. $N_2/77K$ 등온흡착 특성은 BET식과 t-plot을 이용하여 확인하였으며, NO 제거 효율은 가스크로마토그래프를 이용하여 측정하였다. 실험 결과, Si-OH와 Si-O-Si의 stretching vibration peak가 관찰되었으며, (100), (110), (200) 그리고 (210)의 육방배열의 1차원 구조를 확인하였다. Cu 금속이 도입된 MCM-41은 Cu 도입량이 증가할수록 비표면적과 미세기공부피는 감소한 반면에 NO 제거 효율은 증가하였다. 결과적으로 Cu/MCM-41의 Cu의 함량이 증가함에 따라 전체 촉매작용 반응과 NO 제거율이 증가하였다.

천연광물의 양극성 표면개질을 이용한 상수원수 중 중금속제거 특성 (Heavy Metal Removal from Drinking Water using Bipolar Surface Modified Natural Mineral Adsorbents)

  • 김남열;김영희
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.561-568
    • /
    • 2019
  • Objectives: The most commonly detected heavy metals in rocks and soils, including Pb, Cd, Cu, Fe, Mn and As, are representative pollutants discharged from abandoned mines and have been listed as potential sources of contamination in drinking water. This study focused on increasing the removal efficiency of heavy metals from drinking water resources by surface modification of natural adsorbents to reduce potential health risks. Methods: Iron oxide coating and graft polymerization with zeolites and talc was conducted for bipolar surface modification to increase the combining capacity of heavy metals for their removal from water. The removal efficiency of heavy metals was measured before and after the surface modification. Results: The removal efficiency of Pb, Cu, and Cd by surface modified zeolite showed 100, 92, and 61.5%, respectively, increases compared to 64, 64, and 38% for non-modified zeolite. This implies that bipolar surface modified natural adsorbents have a good potential use in heavy metal removal. The more interesting finding is the removal increase for As, which has both cation and anion characteristics showing 27% removal efficiency where as non-modified zeolite showed only 2% removal. Conclusions: Zeolite is one of the most widely used adsorptive materials in water treatment processes and bipolar surface modification of zeolite increases its applicability in the removal of heavy metals, especially As.

Removing nitrogenous compounds from landfill leachate using electrochemical techniques

  • Nanayakkara, Nadeeshani;Koralage, Asanga;Meegoda, Charuka;Kariyawasam, Supun
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.339-346
    • /
    • 2019
  • In this research, applicability of electrochemical technology in removing nitrogenous compounds from solid waste landfill leachate was examined. Novel cathode material was developed at laboratory by introducing a Cu layer on Al substrate (Cu/Al). Al and mild steel (MS) anodes were investigated for the efficiency in removing nitrogenous compounds from actual leachate samples collected from two open dump sites. Al anode showed better performances due to the effect of better electrocoagulation at Al surface compared to that at MS anode surface. Efficiency studies were carried out at a current density of $20mA/cm^2$ and at reaction duration of 6 h. Efficiency of removing nitrate-N using Al anode and developed Cu/Al cathode was around 90%. However, for raw leachate, total nitrogen (TN) removal efficiency was only around 30%. This is due to low ammonium-N removal as a result of low oxidation ability of Al. In addition to the removal of nitrogenous compounds, reactor showed about 30% removal of total organic carbon. Subsequently, raw leachate was diluted four times, to simulate pre-treated leachate. The diluted leachate was treated and around 88% removal of TN was achieved. Therefore, it can be said that the reactor would be good as a secondary or tertiary treatment step in a leachate treatment plant.

Adsorption Characteristics of Heavy Metals by Various Forest Humic Substances

  • Ahn, Sye-Hee;Koo, Bon-Wook;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권6호
    • /
    • pp.73-82
    • /
    • 2003
  • Various forest humic substances were collected at different climate regions with different forest types, and adsorption of heavy metals such as Cu(II), Zn(II), Cd(II) and Cr(III) were characteristically conducted to obtain optimal adsorption conditions and to evaluate the removal efficiency of heavy metals by each forest humic substance. The adsorption isotherms for Cu(II), Zn(II), Cd(II) and Cr(III) conformed to Langmuir's equation. In the stirred reactor, the removal efficiencies of Cu(II), Zn(II) and Cd(II) by forest humic substances were more than 90% but that of Cr(III) was less than 60%. The adsorption capacities of heavy metals in the stirred reactor were considerably varied depending on the type of forest humic substances. Among humic substances, the one from deciduous forest at subtropical region showed the highest removal efficiency for Cu(II). There was no significant difference in removal efficiency by each heavy metal depending on reaction temperature ranged from 20 to 50oC except for Cr(III), and the adsorptions of Cu(II), Zn(II) and Cd(II) were occurred rapidly in the incipient stage within 10 min, while Cr(III) needed more reaction time to be adsorbed. The stirred and packed bed column reactors showed similar adsorption characteristics of heavy metals by humic substances, but the removal efficiency was considerably higher in the packed bed column reactor than in the stirred reactor. Therefore, in actual operation process, a continuous packed bed column reactor was more economical.