• Title/Summary/Keyword: Cu ratio

Search Result 1,192, Processing Time 0.037 seconds

Analyses of Soil Cadmium and Copper Contents on a Region of Burgundy in France

  • Kim, Sangdeog A.;Alain Bermond;Denis Baize
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The aim of present research was to know Cd availability. As a first report of this work, we present some results of analysing soil Cd and Cu contents on a part of Burgundy in France. Soil samples were collected from surface-ploughed layer in fields across the southern part of the Yonne district, Burgundy, France. From the first extractable Cd content on a ratio (soil : EDTA =1:10), the soil Cd values on Carixien soil series decreased to a-third or to a-fourth of those Cd values on a lower ratio (soil : EDTA = 15). While the extractable Cd of the soil samples on Sols marron soil series decreased in a smaller extent. The changes of mixing ratio from 150 (soil : EDTA) to 1:10 and to 1:5 (soil : EDTA) had decreased the extractable Cu contents. But the range of the decrease was not so large as that of Cd contents. Soils on some soil series were a half (Carixien) or two-thirds level (Dombrien, Aubes) when comparing the extractable Cu content on 1:5 ratio to the content on 150 ratio. The absorbance for Cu analyses of soils on Carixien, Terres noires, Sols marron soil series varied in larger extent (expressed on standard deviation for 6 values) than that of soils on Dombrien, Aubes soil series.

  • PDF

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

Effect of Co content on Magnetoresistance in Rapid Solidified CuCo ribbons (급속 응고된 CuCo 리본의 Co 조성에 따른 자기저항 변화)

  • Song, Oh-Sung;Yoon, Ki-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.120-125
    • /
    • 2006
  • By employing a rapid solidification method and atmospheric annealing at $450^{\circ}C-1hr$, we were able to manufacture inexpensively granular CuCo alloy ribbons with thickness of $20{\mu}m$ showing giant magnetoresistance (GMR) ratio of more than 5% at a high magnetic field of 0.5T. To verify maximum MR effect, the MR ratio, saturation magnetization, and microstructure change were investigated with Co contents between 5 and 30 at%. It was possible to obtain GMR ratios of 5.2% at 1.2T, and 3% at 0.5T, which implies an appropriate MR for industrial purpose at a Co content of $8{\sim}l4%$. MR ratio was reduced rapidly at a Co content below 5% due to superparamagnetic effect and at a Co content above 20% due to agglomeration of Co clusters. Surface oxidation during rapid solidification and atmospheric annealing did not have much affect on MR ratio. Our result implies that our economic CuCo granular alloy ribbons may be appropriate for high magnetic field sensor applications with wide content range of $8{\sim}14$ at%Co.

  • PDF

Fabrication of wide-bandgap β-Cu(In,Ga)3Se5 thin films and their application to solar cells

  • Kim, Ji Hye;Shin, Young Min;Kim, Seung Tae;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • $Cu(In,Ga)_3Se_5$ is a candidate material for the top cell of $Cu(In,Ga)Se_2$ tandem cells. This phase is often found at the surface of the $Cu(In,Ga)Se_2$ film during $Cu(In,Ga)Se_2$ cell fabrication, and plays a positive role in $Cu(In,Ga)Se_2$ cell performance. However, the exact properties of the $Cu(In,Ga)_3Se_5$ film have not been extensively studied yet. In this work, $Cu(In,Ga)_3Se_5$ films were fabricated on Mo-coated soda-lime glass substrates by a three-stage co-evaporation process. The Cu content in the film was controlled by varying the deposition time of each stage. X-ray diffraction and Raman spectroscopy analyses showed that, even though the stoichiometric Cu/(In+Ga) ratio is 0.25, $Cu(In,Ga)_3Se_5$ is easily formed in a wide range of Cu content as long as the Cu/(In+Ga) ratio is held below 0.5. The optical band gap of $Cu_{0.3}(In_{0.65}Ga_{0.35})_3Se_5$ composition was found to be 1.35eV. As the Cu/(In+Ga) ratio was decreased further below 0.5, the grain size became smaller and the band gap increased. Unlike the $Cu(In,Ga)Se_2$ solar cell, an external supply of Na with $Na_2S$ deposition further increased the cell efficiency of the $Cu(In,Ga)_3Se_5$ solar cell, indicating that more Na is necessary, in addition to the Na supply from the soda lime glass, to suppress deep level defects in the $Cu(In,Ga)_3Se_5$ film. The cell efficiency of $CdS/Cu(In,Ga)_3Se_5$ was improved from 8.8 to 11.2% by incorporating Na with $Na_2S$ deposition on the CIGS film. The fill factor was significantly improved by the Na incorporation, due to a decrease of deep-level defects.

Magnetoresistance in Hybrid Type YBCO-NiO/NiFe/Cu/NiFe Film Structure

  • Lee, S.S;Rhee, J.R;Hwang, D.G;Rhie, K
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.83-85
    • /
    • 2001
  • The magnetoresistance properties of NiO/NiFe/Cu/NiFe spin valve film deposited on MgO(100) substrate with YBa$_2$$Cu_3O_7$(YBCO) film were investigated at room temperature and at 77 K. The magnetoresistance (MR) curves of the hybrid superconductor-magnetoresistor film structure showed an exchange coupling field of 300 Oe and an inverse magnetoresistance ratio of -6.5%. The magnetization configurations of the two magnetic layers in the NiO spin valve were antiparallel due to an increment in the conduction electron flow to superconductor YBCO film. This sample showed an inverse MR ratio.

  • PDF

Blue Electroluminescent Properties and Dependent of Dye Mixed ratio of ZnS:Cu (ZnS:Cu의 청색 발광 특성과 염료 혼합비 의존성)

  • 이종찬;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.528-531
    • /
    • 2000
  • ZnS:Cu phosphor used on powder electroluminescent device has a green emission in low frequency and a blue emission in high frequency. In this paper, to obtain the powder electroluminescent device of the blue emission in low frequency, the emission properties with mixed the ratio between phosphor and dye was investigated. The mixed ratio of the dye was from 0 to 5 weight percent. To inquire into the blue emission, the emission spectrum, the CIE coordinate system and the brightness were measured.

  • PDF

Complete Combustion of Benzene over CuO/CeO2 Catalysts Prepared by Various Methods (다양한 방법으로 제조된 CuO/CeO2 촉매에서의 벤젠의 연소반응)

  • Jung, Won Young;Song, Young In;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.128-133
    • /
    • 2013
  • Catalytic combustion of benzene over $CeO_2$-supported copper oxides has been investigated. The supported copper oxides catalysts were prepared using ball mill method and characterized by XRD, FT-IR, TEM and TPR. In the CuO/$CeO_2$ catalysts prepared using ball mill method, highly dispersed copper oxide species were shown at high loading ratio. The CuO/$CeO_2$ prepared using ball mill method showed the higher activity than those prepared using impregnation method. The catalytic activity increased with an increase in the CuO loading ratio, 10 wt% loaded CuO/$CeO_2$ catalyst giving the highest activity. In addition, the promoting of 10 wt% loaded CuO/$CeO_2$ catalyst with $Fe_2O_3$ and CoO enhanced the dispersion of CuO and then increased the catalytic activity.

Treatment of Cu-EDTA by using Photocatalytic Oxidation Process - Comparison between UV Lamp and Solar Light - (광산화 공정을 이용한 Cu-EDTA 처리 - 인공 자외선램프와 태양광의 처리경향 비교 -)

  • Shin, In-Soo;Choi, Bong-Jong;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Effect of the pH, molar ratio of Cu(II)/EDTA, concentration of Cu(II)-EDTA and ionic strength on the photocatalytic oxidation(PCO) of Cu(II)-EDTA in solar light was studied in this work. Experimental results in this work were compared with previous results obtained with UV-lamp. In the kinetics, Cu(II)-EDTA decomposition was favorable below neutral pH. The removal of Cu(II) and DOC was favorable as $TiO_2$ dosage increased. The initial rate for the decomplexation of Cu(II)-EDTA linearly increased as the concentration of Cu(II)-EDTA increased. The removal of Cu(II) and DOC was not much affected by variation of ionic strength with $NaClO_4$ as a background ion while much reduction was observed in the presence of background ions having higher formal charges. The removal trend of Cu(II) and DOC with variation of ionic strength and concentration of Cu(II)-EDTA in solar light was similar with that in UV light. Variation of the molar ratio of Cu(II)/EDTA showed a negligible effect on the removal of both Cu(II) and DOC. However, removal of both Cu(II) and DOC was two-times greater than that previous results obtained with UV light.

Performance Improvement by Controlling Se/metal Ratio and Na2S Post Deposition Treatment in Cu(In,Ga)3Se5 Thin-Film Solar cell

  • Cui, Hui-Ling;Kim, Seung Tae;Chalapathy, R.B.V.;Kim, Ji Hye;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • Cu(In,Ga)3Se5 (β-CIGS) has a band gap of 1.35 eV, which is an optimum value for high solar-energy conversion efficiency. The effects of Cu and Ga content on the cell performance were investigated previously. However, the effect of Se content on the cell performance is not well understood yet. In this work, β-CIGS films were fabricated by three-stage co-evaporation of elemental sources with various Se fluxes at the third stage instead of at all stages. The average composition of five samples was Cu1.05(In0.59,Ga0.41)3Sey, where the stoichiometric y value is 5.03 and the stoichiometric Se/metal (Se/M) ratio is 1.24. We varied the Se/metal ratio in a range from 1.18 to 1.28. We found that the best efficiency was achieved when the Se/M ratio was 1.24, which is exactly the stoichiometric value where the CIGS grains on the CIGS surface were tightly connected and faceted. With the optimum Se/M ratio, we were able to enhance the cell efficiency of a β-CIGS solar cell from 9.6% to 12.0% by employing a Na2S post deposition treatment. Our results indicate that Na2S post deposition treatment is very effective to enhance the cell efficiency to a level on par with that in α-CIGS cell.

The xps study of the Cu-Zn nanofiber

  • Jeong, Eunkang;Kang, Yujin;Park, Juyun;Kang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.2-236.2
    • /
    • 2015
  • The copper-zinc(Cu-Zn) nanofiber was prepared by electrospinning method. The Cu/PVP (polyvinylpyrrolidone) and Zn/PVP precursor solutions were prepared by dissolution of copper sulfate and zinc acetate in methanol, respectively. The PVP was used to control the viscosity of the precursor solutions. The optimized ratio for the Cu/PVP and Zn/PVP nanofibers was determined separately. Then the suitable ratio of the precursor solutions was applied for fabrication of Cu/Zn/PVP nanofiber. For the electrospinning method, the precursor solutions were filled in a syringe. The distance between metallic needle on the syringe and collector was fixed at 16 cm and the voltage was applied on the tip was 13.0 kV. And the as-spun nanofiber was heated at 353K for removal of residual solvent. Then the heated nanofibers were calcined at 973K to decompose PVP. The obtained Cu, Zn, and Cu-Zn nanofibers were investigated with X-ray photoelectron spectroscopy (XPS) for the chemical properties, scanning electron microscopy (SEM) for the morphologies, and X-ray diffraction (XRD) to characterize the crystallinity and phase of nanofibers.

  • PDF