• Title/Summary/Keyword: Cu ratio

Search Result 1,192, Processing Time 0.029 seconds

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

Electrical Properties of CuInS$_2$Ratio (Cu/In 성분비에 따른 CuInS$_2$박막의 전기적 특성)

  • Park, Gye-Choon;Jeong, Woo-Seong;Chang, Young-Hak;Lee, Jin;Jeong, Hae-Duck
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.109-112
    • /
    • 1995
  • CuInS$_2$thin film was prepared by heat treatment at vacuum 10$\^$-3/ Torr of S/In/Cu stacked layer which was deposited by sequential. And so, the polycrystalline CuInS$_2$with chalcopyrite structure was well made at heat treatment temperature of 250$^{\circ}C$ and heat treatment time of 60 min. Single phase of CuInS$_2$was formed from Cu/In composition ratio of 0.84 to 1.3. p conduction type of CuInS$_2$thin film was appeared from Cu/In competition ratio of 0.99. The highest resistivity of CuInS$_2$with p type was 1.608${\times}$10$^2$$\Omega$cm at Cu/In composition ratio of 0.99 and The lowest resistivity was 5.587${\times}$10$\^$-2/$\Omega$cm at Cu/In composition ratio of 1.3.

  • PDF

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 증착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • Park, Gye-Choon;Jeong, Woon-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase $CuInS_2$ thin film with the highest diffraction peak (112) at diffraction angle $(2\theta)$ of $27.7^{\circ}$ and the second highest diffraction peak (220) at diffraction angle $(2\theta)$ of $46.25^{\circ}$ was well made with chalcopyrite structure at substrate temperature of $70^{\circ}C$, annealing temperature of $250^{\circ}C$, annealing time of 60 min. The $CuInS_2$ thin film had the greatest grain size of $1.2{\mu}m$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that $CuInS_2$ thin film was 5.60 A and 11.12 A respectively. Single phase $CuInS_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type $CuInS_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of $CuInS_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type $CuInS_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, $3.0{\times}104cm^{-1}$ and 1.48 eV respectively. When Cu/In composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type $CuInS_2$ thin film was 821 nm, $6.0{\times}10^4cm^{-1}$ and 1.51 eV respectively.

  • PDF

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 층착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • 박계춘;정운조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase CuInS$_2$ thin film with the highest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second highest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$ was well made with chalcopyrite structure at substrate temperature of 70 $^{\circ}C$, annealing temperature of 25$0^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 ${\mu}{\textrm}{m}$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that CuInS$_2$ thin film was 5.60 $\AA$ and 11.12 $\AA$ respectively. Single phase CuInS$_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type CuInS$_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of CuInS$_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type CuInS$_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, 3.0x10 $^4$ $cm^{-1}$ / and 1.48 eV respectively. When CuAn composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film was 821 nm, 6.0x10$^4$ $cm^{-1}$ / and 1.51 eV respectively.

  • PDF

Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios

  • Park, Ju-Yun;Lim, Kyoung-A;Ramsier, Rex D.;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3395-3399
    • /
    • 2011
  • Copper oxide thin films were synthesized by reactive radio frequency magnetron sputtering at different oxygen gas ratios. The chemical and physical properties of the thin films were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). XPS results revealed that the dominant oxidation states of Cu were $Cu^0$ and $Cu^+$ at 0% oxygen ratio. When the oxygen ratios increased above 5%, Cu was oxidized as CuO as detected by X-ray induced Auger electron spectroscopy and the $Cu(OH)_2$ phase was confirmed independent of the oxygen ratio. The valence band maxima were $1.19{\pm}0.09$ eV and an increase in the density of states was confirmed after formation of CuO. The thickness and roughness of copper oxide thin films decreased with increasing oxygen ratio. The crystallinity of the copper oxide films changed from cubic Cu through cubic $Cu_2O$ to monoclinic CuO with mean crystallite sizes of 8.8 nm (Cu) and 16.9 nm (CuO) at the 10% oxygen ratio level.

The Study on Concentration of Serum Copper and Zinc in Stomach Cancer Patients (위암 환자의 혈청내 구리 및 아연 농도에 관한 연구)

  • 정유덕
    • Journal of Nutrition and Health
    • /
    • v.24 no.6
    • /
    • pp.516-525
    • /
    • 1991
  • In order to investigate whether serum Cu, Zn and Cu/Zn ratio are the useful indicater for the diagnosis of cancer. serum Cu and Zn levels were determined from 35 normal subjects and 33 stomach cancer patients by Atomic absorption spectrophotometer. The following results are obtained : Serum copper levels of stomach cancer patients were significantly increased than the those of the normal controls. whereas serum Zn levels significantly decreased than those of the normal contros(P<0.01) Therefore the copper to zinc ratio revealed a significant in the serum Cu and Zn levels. The serum protein and albumin levels were significantly lower in cancer patients(P<0.01) And the correlation analysis indicated that there was no significant correlation between serum Cu/Zn ratio and protein or albumin. These data suggest that the serum Cu. Zn and Cu/Zn ratio may be used as a diagnostic test in stomach cancer patients.

  • PDF

Properties of CulnSe$_{2}$ thin films selenizing indium/copper layers prepared by D.C. magnetron sputtering (D.C. magnetron sputtering에 의해 indium/copper 층이 selenizing된 $CuInSe_2$막의 특성)

  • Han, Sang-Kyu;Kim, Sun-Jae;Lee, Hyung-Bock;Lee, Byung-Ha;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.298-305
    • /
    • 1995
  • Copper-indium diselenide, $CuInSe_2$, thin films have been fabricated by selenizing Cu/In stacked layers with different sputtered Cu/(Cu+ln) mole ratios at 450.deg. C for 1hr on alumina substrates. The selenium source was selenium vapor. Microstructure, crystallization, and composition of the selenized $CuInSe_2$ films were examined by using scanning electron microscope, X-ray diffraction, Auger electron spectroscopy, and secondary ion mass spectrometry. Electrical resistivity and hall effects were also measured to investigate the electrical properties. As the sputtered Cu/(Cu+In) mole ratio of In/Cu layer increased, the amounts of void and CuSe phase in the selenized films increased but the composition of $CuInSe_2$ phase was the same regardless of the sputtered mole ratio. Comparing the electrical properties of $CuInSe_2$ thin film before and after the chemical etching, it was seen that the electrical resistivity, carrier concentration, and carrier mobility of the selenized films were affected by the amount of CuSe phase which seemed to increase primarily the hole concentration of the selenized films.

  • PDF

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (II) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (II))

  • Lee, C.W.;Jeong, J.H.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low, due to its texture being {001}<100>. In this study, in order to increase the plastic strain ratio of Cu sheets we investigated the effect of two treatments: 1st the sheet was asymmetrically rolled and annealed, and 2nd the sheet was symmetrically and asymmetrically rolled and subsequently annealed. The average plastic strain ratio (Rm) of the initial Cu sheet was 0.95 and |Δr| was 1.27. After the 2nd treatment of 5.3% symmetric rolling and annealing of Cu sheet at 1000℃ for 60 min in Ar gas condition, the Rm was 2.29 times higher and the |Δr| was 1.44 times higher than that of initial Cu sheet specimen. After the 2nd treatment of 8.2% asymmetric rolling and annealing of Cu sheet at 1000℃ for 60 min in Ar gas conditions, the Rm was 2.51 times higher and |Δr| was 0.53 times lower than that of the initial Cu sheet specimen. These results can be attributed to the change in texture of the Cu sheets due to the differences in the two methods of rolling.

Effects of sulfurization temperature and Cu/(In+Ga) ratio on Sulfur content in Cu(In,Ga)Se2 thin films (Sulfurization 온도와 Cu/(In+Ga) 비가 Cu(In,Ga)Se2 박막 내 S 함량에 미치는 영향)

  • Ko, Young Min;Kim, Ji Hye;Shin, Young Min;Chalapathy, R.B.V.;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • It is known that sulfide at the $Cu(In,Ga)Se_2$ ($CIGSe_2$) surface plays a positive role in $CIGSe_2$ solar cells. We investigated the substitution of S with Se on the $CIGSe_2$ surface in S atmosphere. We observed that the sulfur content in the $CIGSe_2$ films changed according to sulfurization temperature and Cu/(In+Ga) ratio. The sulfur content in the $CIGSe_2$ films increased with increasing the annealing temperature and Cu/(In+Ga) ratio. Also Cu migration toward the surface increased at higher temperature. Since high Cu concentration at the $CIGSe_2$ surface is detrimental role, it is necessary to reduce the S annealing temperature as low as $200^{\circ}C$. The cell performance was improved at $200^{\circ}C$ sulfurization.

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF