• 제목/요약/키워드: Cu nanowires

검색결과 55건 처리시간 0.028초

The Synthesis of Copper Nanowire with high aspect ratio by capping agent for textile electronics

  • Byun, Woonghee;Kim, Minho;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.379.1-379.1
    • /
    • 2016
  • Recently, new types of wearable devices such as textile electronics are considered as the next generation wearable electronics. To realize the textile electronics, conductive fibers are required to supply the power and for signal processing. Conventionally, silver nanowires (Ag NWs) have been attracted as one of the conductive additives in the fibers, however, using the Ag NWs may lead to high production cost since it is a noble metal. Many researches have been done to replace the Ag NWs into a cheaper materials such as copper nanowires (Cu NWs). Here, we synthesized ultra-long Cu NWs for a conductive filler material in conductive fibers, taking advantages of their structural features. To investigate the effect of capping agents on the aspect ratio of the synthesized Cu NWs, we used various capping agents such as hexadecylamine, butylamine, ethylenedilamine and oleylamine in the Cu NW synthesis. In this research, the effects of capping agents on the structure and the synthesis of Cu NWs are presented.

  • PDF

n형 Bi-Te 나노와이어와 p형 Sb-Te 나노와이어로 구성된 미세열전소자의 형성공정 및 열전발전특성 (Fabrication Process and Power Generation Characteristics of the Micro Thermoelectric Devices Composed of n-type Bi-Te and p-type Sb-Te Nanowires)

  • 김민영;박경원;오태성
    • 대한금속재료학회지
    • /
    • 제47권4호
    • /
    • pp.248-255
    • /
    • 2009
  • A micro thermoelectric device was processed by electroplating the n-type Bi-Te nanowires and ptype Sb-Te nanowires into an alumina template with 200 nm pores. Power generation characteristics of the micro devices composed of the Bi-Te nanowires, the Sb-Te nanowires, and both the Bi-Te and the Sb-Te nanowires were analyzed with applying a temperature difference of $40^{\circ}C$ across the devices along the thickness direction. The n-type Bi-Te and the p-type Sb-Te nanowire devices exhibited thermoelectric power outputs of $3.8{\times}10^{-10}W$ and $4.8{\times}10^{-10}W$, respectively. The output power of the device composed of both the Bi-Te and the Sb-Te nanowires decreased to $1.4{\times}10^{-10}W$ due to a large electrical resistance of the Cu electrode connecting the Bi-Te nanowire array with the Sb-Te nanowire array.

Spin Polarization of CuD Nanowires

  • Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • 제11권1호
    • /
    • pp.20-24
    • /
    • 2006
  • Very recently, it was presented that the one dimensional (1D) CuO atomic chains can maintain large magnetic moments. In this work, we analyzed m-resolved density of states (DOS) to understand the peculiar spin polarization occurred in Cu atoms. It was found that the $\mid{m}\mid=1$ states play an essential role in the spin polarization of Cu atoms. In addition, we calculated magnetic anisotropy energy (MAE) and observed that the distribution of MAE is strongly sensitive to the interatomic distance between Cu and O atoms. Besides, it was revealed that the contribution to MAE comes for the second half of Brillouin zone (BZ).

Spin polarization of CuO nanowires

  • Hong Jisang;Wu R.Q.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2005년도 동계학술연구발표회 및 2차 아시안포럼
    • /
    • pp.221-221
    • /
    • 2005
  • PDF

Numerical investigation of mechanical properties of nanowires: a review

  • Gu, Y.T.;Zhan, H.F.;Xu, Xu
    • Interaction and multiscale mechanics
    • /
    • 제5권2호
    • /
    • pp.115-129
    • /
    • 2012
  • Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs' mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.

SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성 (Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO)

  • 성채원;배효정;조세아;허지원;한은미;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제30권4호
    • /
    • pp.91-97
    • /
    • 2023
  • 전기화학적 이산화탄소 (CO2) 환원은 CO2를 고부가가치의 탄소화합물로 전환하는 매우 유망한 방법이다. 본 논문에서는 양극 산화법과 원자층 증착법을 이용하여 전기화학적 CO2 환원용 SnO2/Cu(OH)2 나노와이어 (NWs) 전극을 합성하는 손쉬운 방법과 그 특성에 대해 보고한다. 제작된 SnO2/Cu(OH)2 NWs (-16 mA/cm2)는 -1.0 V (vs. RHE)에서 Cu(OH)2 NWs (-6 mA/cm2) 대비 더 우수한 전기화학적 성능을 보였다. CO2 환원 성능을 확인해 보았을 때도 일산화탄소(CO), 포름산염 (HCOOH) 생성물에 대해 각각 29.72 %, 58.01 %의 높은 페러데이 효율 (FE)을 보였다. 본 연구는 CO2 배출로 인한 기후 변화에 대응하는 경제적이며 지속 가능한 방법을 제공할 뿐만 아니라, 전기화학적 CO2 환원용 전극 개발에 크게 기여할 것으로 예상된다.