• Title/Summary/Keyword: Cu mineralization

Search Result 97, Processing Time 0.02 seconds

Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Korea (거도광산(巨道鑛山) Fe-Cu 및 Au-Bi-Cu 광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Ko, Jai Dong;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.189-204
    • /
    • 1982
  • The Geodo mine is located in the southern limb of the Hambaeg syncline. Geology of the area consists of Paleozoic-Mesozoic sedimentary Rocks and Cretaceous igneous rocks. The important igneous rocks presumably related to skarnization and ore mineralization in the area, are the early granodiorite and the late porphyritic granodiorite. Two mineralogical types of ore deposits are recognized in the area. They are the Fe-Cu deposits in the Myobong formation and the Au-Bi-Cu deposits in the Hwajeol formation. Contact metamorphism due to granodiorite intrusion includes hornfelsization, exoskarnization and endoskarnization. Wall-rock alterations related to the Fe mineralization are grouped into the hydrothermal replacement skarnization and the hydrothermal filling skarnization. Another hydrothermal alteration is associated with the Cu mineralization. Various mineralogical analyses have been applied for the identification of minerals. They include optical microscopy, chemical analysis, etching test, X-ray diffraction, and infrared absorption spectroscopic analyses. The ore minerals in these ore deposits are classified into two groups;hypogene and supergene minerals. Hypogene minerals consist of magnetite, pyrite, chalcopyrite, and chalcocite. Supergene minerals consist of chalcocite, bornite, and geothite. Ore minerals show various kinds of ore texture: open-space filling, exsolution, replacement, and cementation texture. The gangue minerals consist of quartz, diopside, epidote, garnet and plagioclase in the hornfelsic zone, garnet, diopside, scapolite, actinolite, sericite, chlorite, quartz, and calcite in the skarn zone, and, epidote, chlorite, sericite, quartz, and calcite in the late hydrothermal alteration zone. This study shows that the Fe-Cu deposits are of metasomatic pipe type with the later hydrothermal fillings, and the Au-Bi-Cu deposits are of hydrothermal fissure-filling type. The mineralization is probably related to the intrusion of porphyritic granite.

  • PDF

A Study for Genesis by Homogenization Temperature and Paragenesis of Dalsung Mine (달성광산(達城鑛山)의 유체포유물(流體包有物)에 의(依)한 생성온도(生成溫度)와 광물공생(鑛物共生)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn;Hwang, Ho Sun
    • Economic and Environmental Geology
    • /
    • v.7 no.1
    • /
    • pp.23-35
    • /
    • 1974
  • Dalsung Mine, located in Kyungsang puk-do, Korea, is well known as one of the typical breccia pipe filling hydrothermal W-Cu deposit. By homogenization temperature with fluid inclusions in quartz crystals (330 samples were dealt with) by heating stage microscope, two temperature ranges were figured out, one is $154^{\circ}{\sim}267^{\circ}C$ (average $210^{\circ}C$), and the other is $283^{\circ}{\sim}335^{\circ}C$ (average $309^{\circ}C$). Regarding to mineral paragenesis, mineralization of the deposit were thought that former, mesothermal stage, W-Cu mineralization processed through out the ore body and later mineralization were limitted under -4level as katathermal solution with Cu minerals.

  • PDF

K-Ar Age of the Keumseongsan Volcanic Rocks and Mineralization in the Southeastern Part of Euiseong, Gyeongsangbuk-Do, Republic of Korea (경북·의성 동남부에 분포하는 금성산 화산암류의 K-Ar연대와 그주변의 광화시기)

  • Lee, Hyun Koo;Kim, Sang Jung;Yun, Hyesu;Choi, Wyi Chan;Song, Young Su;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.445-454
    • /
    • 1993
  • The Keumseongsan caldera is composed of the Cretaceous sedimentary rocks of the Gyeonesang Supergroup, volcanic rocks of the Yucheon Group and basic dykes. The Keumseongsan caldera is formed by subsidence of volcanic rocks, and arc fault developed late. Also, synistral strike-slip fault ($N60^{\circ}W$) developed. Volcanic rocks belong to subalkaline rocks and calcalkaline magma series. First tuffaceous breccia erupted before 71.4 Ma and cavity of magma chamber caused subsidence, which formed arc fault. Basaltic lava erupted at 71.4 Ma and residual fluids containing Fe, As, Pb, Zn and Cu metal elements built the Ohto deposits, which are dated to be 70.5 Ma based on K-Ar age for sericite. Tuffaceous breccia and tuff erupted between 70.5 and 67 Ma. When volcanic eruption became weakened, cavity in site of magma chamber brought subsidence. Rhyolite intruded and erupted at 67 Ma, and intrusive rhyolite intruded according to arc faults, also. Hydrothermal fluids containing Fe, As, Pb, Zn, Cu, Sb, Bi, Au and Ag formed the Tohyeon deposits. K-Ar age for sericite from the Tohyeon mine gives 66.0 Ma. Results of field exploration, geochemical analyses of volcanic rocks support mineralization possibility by volcanism. Especially, age of volcanism and mineralization are well in coincidence with results of K-Ar age dating. By these results, Ohto Cu mineralization is regarded to be associcated with basaltic rocks, while Tohyeon Cu mineralization with rhyolitic rocks.

  • PDF

Ore Minerals and Fluid Inclusions Study of the Kamkye Cu-Pb-Zn-Au-Ag Deposits, Repubulic of Korea (감계 동(銅)-연(鉛)-아연(亞鉛)-금(金)-은광상(銀鑛床) 광석광물(鑛石鑛物)과 유체포유물(流體包有物) 연구(硏究))

  • Lee, Hyun Koo;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 1995
  • The Kamkye Cu-Pb-Zn-Au-Ag deposits occur as quartz veins that filled fault-related fractures of NW system developed in the Cretaceous Gyeongsang basin. Three major stages of mineral deposition are recognized: (1) the stage I associated with wall rock alteration, such as sericite, chlorite, epidote and pyrite, (2) the early stage II of base-metal mineralization such as pyrite, hematite, and small amounts of sphalerite and chalcopyrite. and the middle to late stage II of Cu-As-Sb-Au-Ag-S mineralization, such as sphalerite, chalcopyrite, galena with tetrahedrite, tennantite, pearceite, Pb-Bi-Cu-S system, argentite and electrum. (3) the stage III of supergene mineralization, such as covellite, chalcocite and malachite. K-Ar dating of alteration sericite is a late Cretaceous ($74.0{\pm}1.6Ma$) and it may be associated with granitic activity of nearby biotite granite and quartz porphyry. Fluid inclusion data suggest a complex history of boiling, cooling and dilution of ore fluids. Stage II mineralization occurred at temperatures between 370 to $220^{\circ}C$ from fluids with salinities of 8.4 to 0.9 wt.% NaCl. Early stage II($320^{\circ}C$, 2.0 wt.% NaCl) may be boiled due to repeated fracturing which opened up the hydrothermal system to the land surface, and which resulted in a base-metal sulfide. Whilst the fractures were opened to the surface, mixing of middle-late stage II ore fluids with meteoric waters resulted in deposition of Cu-As-Sb-Au-Ag minerals from low temperature fluids(${\leq}290^{\circ}C$). Boiling of ore fluids may be occured at a pressure of 112 bar and a depth of 412 m. Equilibrium thermodynamic interpretation of sphalerite-tetraherite assemblages in middle stage II indicates that the ore-forming fluid had log fugacities of $S_2$ of -6.6~-9.4 atm.

  • PDF

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역의 동 광화작용 특성)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, In Joon;Ryoo, Chung-Ryul;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

A Survey Report on the Polymetallic Mineralization in the Oyon Mineralized District, Central Peru (페루 중부 오욘 다중금속 광화작용에 대한 조사보고)

  • Lee, Jaeho;Kim, Injoon;Nam, Hyeong-tae
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • The surveyed mines are located in a polymetallic vein, replacement, and skarn mineral district in the central Andes of Peru. Iscaycruz, which includes underground and open pit mines that produce zinc and lead concentrates, was the largest mineral deposit of an important group of base metal deposits in the Andes of central Peru. The deposits are sub-vertical seams of polymetallic ores(Zn, Cu, and Pb). These seams are hosted by Jurassic and Cretaceous sedimentary rock formation. The intrusion of igneous rocks in these formations originated metallic deposits of metasomatic and skarn types. The Raura mine is composed of polymetallic deposit of veins and replacement orebodies. The main sedimentary unit in the area is Cretaceous Machay Limestone. The Raura depression contains several orebodies each with different mineralization: predominantly Pb-Zn bearing Catuvo orebody; Ag-rich galena-bearing Lake Ninacocha orebody; Cu-Ag bearing Esperanza and Restauradora orebody. Huaron is a hydrothermal polymetallic deposit of silver, lead, zinc, and copper mineralization hosted within structures likely related to the intrusion of monzonite dikes, principally located within the Huaron anticline. Mineralization is encountered in veins parallel to the main fault systems, in replacement bodies known as "mantos" associated with the calcareous sections of the conglomerates and other favourable stratigraphic horizons, and as dissemination in the monzonitic intrusions at vein intersections.

Ore Genesis of the Wondong Polymetallic Mineral Deposits in the Taebaegsan Metallogenic Province (태백산광화대내의 원동 다금속광상의 성인)

  • Hwang, Duk Hwan;Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.375-388
    • /
    • 1998
  • The purpose of this study is to investigate the ore genesis and occurrence of the Wondong polymetallic mineral deposits. The Pb-Zn, Fe and W-Mo mineralizations are found in skarn zones which formed mainly in or along the fault shear zones with the $N25-40^{\circ}W$ and $N10-50^{\circ}E$ directions, whereas the Cu-Mo mineralization is appeared hydrothermal replacement zone. The skarn minerals consist mainly of garnet and epidote, which were the last alteration phases between pneumatolytic and hydrothermal stages. The mineral paragenesis toward the late stage are as follows: arsenopyrite, scheelite, magnetite, pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and molybdenite. Average ore grades are 0.33 g/t Au, 46.29 g/t Ag, 0.06% Cu, 4.4% Pb, 2.61% Zn and 29.39% Fe in tunnels, and 0.31 % Cu, 0.52% Pb, 6.29% Zn, 29.29% Fe, 0.03% Mo and 0.12% $WO_3$ in drill cores. Fluid inclusion data shows that Type I (liquid-rich), Type II (vapor-rich) and Type III (halite-bearing) inclusions are coexisted and their homogenization temperatures are quite similar. This indicates that boiling conditions have been reached during the mineralization. It is also likely that the ore solutions were evolved through the mixing between magmatic and meteoric waters. Rhyolite and quartz porphyry far the mineralization probably are not responsible of the Wondong polymetallic mineral deposits.

  • PDF

Studies on Geology and Mineral Resources of the Okcheon Belts -Mineralization in the Vicinity of the Muamsa Granite Stock- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -무암사화강암(務岩寺花崗岩) 주위에서의 광화작용(鑛化作用)에 관(關)하여-)

  • Yun, Suckew;Kim, Kyu Han;Woo, Jong Sang
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.3-17
    • /
    • 1986
  • Hundred mineral deposits including W-Mo, Pb-Zn-Cu, fluorite and talc occur in the Cambre-Ordovician limestone contacting with the Cretaceous Muamsa and Wolak granitoids in the Susanri-Hwanggangri mineralized zone. In most mineral deposits characterized by metasomatic replacement, skarn and hydrothermal vein types, two distinct tendencies were found as W-Mo mineralization in or/and near granitoid batholith and ($Pb-Zn-Cu(CaF_2)$) mineralization which is gradually increased toward the batholith. W-Mo veins of extensive vein system occupy northly striking fractures whilst $Pb-Zn-Cu-CaF_2$ veins strike northeast or northwest. In this work, three representative lead-zinc-copper deposits choosing the Dangdu, Useog and Eoksu mines were dealt with in detail. Skarn ore bodies in the Dangdu mine were grouped into early diopside rich clinopyoxene-garnet, barren skarn and ore bearing late hedenbergite rich clinopyroxene-garnet skarn. Temperature and $X_{CO_2}$, obtained from hedenbergite-andradite-calcite-quartz mineral equilibria in the Dangdu ore deposits were $580{\sim}650^{\circ}C$ and 0.15~0.3, respectively. Fluid inclusien evidence in the Useog mine indicates that main stage mineralization temperature ranges from 224 to $389^{\circ}C$ with a salinity of 2~17 equivalent wt. percent NaCl. Sphalerites from the Dangdu and Useog mines have 16~17.7 mole percent in FeS which is relatively consistent to those of some other lend-zinc ore deposits in South Korea. Filling tcmjCerature of fluid inclusion frem the Eoksu mine shows deposition of ore within the temperature ranges from 237 to $347^{\circ}C$ and within the salinity ranges from 2.6 to 10.77 equivalent wt. percent NaCl.

  • PDF

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.

Mineralization and Genetic Environments of the Central and Main Orebodies in the Manjang Deposit, Goesan (만장광상 중앙광체와 본광체의 광화작용과 생성환경)

  • Yu, Hyunmin;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-101
    • /
    • 2018
  • The Manjang deposit developed in the Hwajeonri formation of the Okcheon metamorphic belt consists of the Central and Main orebodies of Cu-bearing hydrothermal vein type and the Western orebody of Fe-skarn type. This study focuses on the Cu mineralization of the Central and Main orebodies to compare with the genetic environments of the Western orebody previously studied. The Central orebody produced pyrrhotite and chalcopyrite as major ore minerals with vein texture, while the Main orebody contains pyrite, arsenopyrite, and chalcopyrite as major ore minerals with vein, massive, and brecciated texture. Sphalerite, galena, magnetite, ilmenite, rutile, cassiterite, wolframite, and stannite are also accompanied. Local occurrence of skarn is dominated by grossular and hedenbergite, reflecting the reduced condition of the skarnization. Geothermometries of sphalerite-stannite in the Central orebody and arsenopyrite-pyrite in the Main orebody indicate the formation temperature of $204-263^{\circ}C$ and $383-415^{\circ}C$, respectively. Sulfur fugacity of $10^{-6}-10^{-7}atm$. in the Main orebody decreased toward the Central orebody. Sulfur isotope compositions of sulfide minerals from the Central and Main orebodies are 4.6-7.9‰ and 4.3-7.0‰, respectively, reflecting magmatic origin with slight influence by host rock. Considering ore mineralogy, texture as well as physicochemical conditions, the Main and Central orebodies of hydrothermal Cu mineralization reflect the characteristics of proximal and distal type ore mineralization, respectively, related to hidden igneous rocks, and they were generated under different hydrothermal systems from the Fe-skarn Western orebody.