• Title/Summary/Keyword: Cu filter

Search Result 173, Processing Time 0.031 seconds

Photodegradation of Volatile Organic Compound (VOC) Through V-Doped or CuOx-grafted $TiO_2$ nanoparticles

  • Kim, Beum Woo;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.271.1-271.1
    • /
    • 2013
  • Titania is usually used in sun-screens, tooth paste, and other daily used objects as a pigment. However, scientists have focused on titania as photocatalyst due to its excellent activities. By fabricating vanadium doped TiO2 and CuOx co-catalyzed TiO2 nano-size filter, the degradation level of the volatile organic compound (VOC) concentration was tested using 365nm UV LED as light source in a closed chamber. Main purpose for this test is to evaluate the activities of various catalysts for degrading the VOCs which are detrimental to human body and toluene and p-xylene were chosen in the VOC removal test. Target gas materials were injected into the test chamber with dry air as carrier gas which was flowed into the gas washer bottle filled with liquid form of VOC substance. When the VOC gas flows into the chamber, it is circulated by 200 mm fan in order to contact with the set-up filter on the aluminum holder. Target gas concentration in the chamber was monitored using VOC detector (miniRae3000, Raesystems) which was also placed inside the chamber. With the measured concentration, the VOC degradation efficiency and the degradation rate were evaluated and used to compare the catalytic activities.

  • PDF

The Effect of Paper Permeability on Cigarette Properties (종이의 투기도가 담배 물성에 미치는 영향)

  • Young-Hoh Kim;Young-Rim Han;Moon-Yang Lee;Young- Taek Lee;Chung-Ryul Kim
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.62-62
    • /
    • 2001
  • The cigarette ventilation affects not only the amount of tar and nicotine delivery by a cigarette, but also the composition of the smoke. Therefore, it is important to stabilize of variability in cigarette ventilation that would be affected by changes in cigarette components. This work was conducted to determine the major factors that influence the cigarette ventilation and also to provide fundamental informations for improving the uniformity of cigarette performances. To evaluate the effect of cigarette ventilation as a dependant variable, the three independent factors were the air permeability of plugwrap, tipping paper and the filter pressure drop. We determined the effect of paper permeability on ventilation variability and the optimum condition in combinations of independent factors. The mean of cigarette ventilation was increased as plugwrap permeability increases, particularly at 26,000 CU. However, it was exhibited that standard deviation and coefficient of variation of the cigarette ventilation were decreased with increasing plugwrap permeability. At the 600 CU and 1,200 CU of tipping paper permeability, process capability index (Cp) of the cigarette ventilation increased as plugwrap permeability increases. Following the optimum condition of cigarette ventilation induced by fitted regression equation, one was to optimize 50% ventilation level is by combination with plugwrap permeability of 16,000 CU, tipping paper permeability of 810 CU, filter pressure drop of 319 mm$H_2O$, respectively.

Implementation of High-Quality Si Integrated Passive Devices using Thick Oxidation/Cu-BCB Process and Their RF Performance (실리콘 산화후막 공정과 Cu-BCB 공정을 이용한 고성능 수동 집적회로의 구현과 성능 측정)

  • 김동욱;정인호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.509-516
    • /
    • 2004
  • High-performance Si integrated passive process was developed using thick oxidation process and Cu-BCB process. This passive process leads to low-cost and high-quality RF module with a small form factor. The fabricated spiral inductor with 225 um inner diameter and 2.5 turns showed the inductance of 2.7 nH and the quality factor more than 30 in the frequency region of 1 ㎓ and above. Also WLCSP-type integrated passive devices were fabricated using the high-performance spiral inductors. The fabricated low pass filter had a parallel-resonance circuit inside the spiral inductor to suppress 2nd harmonics and showed about 0.5 ㏈ insertion loss at 2.45 ㎓. And also the high/low-pass balun had the insertion loss less than 0.5 ㏈ and the phase difference of 182 degrees at 2.45 ㎓.

Analysis of Photon Spectrum for the use of Added Filters using 3D Printing Materials (3D 프린팅 재료를 이용한 X-선 부가 여과 시 광자 스펙트럼에 대한 분석)

  • Cho, Yong-In;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • 3D printing technology is being used in various fields such as medicine and biotechnology, and materials containing metal powder are being commercialized through recent material development. Therefore, this study intends to analyze the photon spectrum during added filtration using 3D printing material during diagnostic X-ray examination through simulation. Among the Monte Carlo techniques, MCNPX (ver. 2.5.0) was used. First, the appropriateness of the photon spectrum generated in the simulation was evaluated through SRS-78 and SpekCalc, which are X-ray spectrum generation programs in the diagnostic field. Second, photon spectrum the same thickness of Al and Cu filters were obtained for characterization of 3D printing materials containing metal powder. In addition, the total photon fluence and average energy according to changes in tube voltage were compared and analyzed. As a result, it was analyzed that PLA-Al required about 1.2 ~ 1.4 times the thickness of the existing Al filter, and PLA-Cu required about 1.4 ~ 1.7 times the thickness of the Cu filter to show the same degree of filtration. Based on this study in the future, it is judged that it can be utilized as basic data for manufacturing 3D printing additional filters in medical fields.

A Study on the Design and Characteristics of thin-film L-C Band Pass Filter

  • Kim In-Sung;Song Jae-Sung;Min Bok-Ki;Lee Won-Jae;Muller Alexandru
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.176-179
    • /
    • 2005
  • The increasing demand for high density packaging technologies and the evolution to mixed digital and analogue devices has been the con-set of increasing research in thin film multi-layer technologies such as the passive components integration technology. In this paper, Cu and TaO thin film with RF sputtering was deposited for spiral inductor and MOM capacitor on the $SiO_2$/Si(100) substrate. MOM capacitor and spiral inductor were fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, important devices for mobile communication system. Based on the high-Q values of passive components, MOM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and 5 dB for a 900 MHz filter. This paper also discusses a analysis and practical design to thin-film L-C band pass filter.

Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter (촉매 담지 코디어라이트 다공성 필터의 NOx/SOx 동시제거에 대한 연구)

  • Lee, Shi-Hee;Chung, Koo-Chun;Kim, Jee-Woong;Shin, Min-Chul;Lee, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.256-262
    • /
    • 2002
  • After porous filters were manufactured using cordierite powder whose mean paricle size was 200${\mu}m$, they were loaded with catalysts such as $V_2O_5$, CuO and $LaCoO_3$ by vacuum impregnation method. And the NOx/SOx simultaneous removal efficiency was measured by passing NO and $SO_2$ through catalyst-loaded ceramic filters. The cordierite porous filters had the apparent porosity of 61.6%, the compressive strength of 12.3 MPa and the pressure drop of 147 pa at the face velocity of 5 cm/sec. According to the analysis of NO/$SO_2$ simultaneous removal efficiency, perovskite $LaCoO_3$ catalyst was the most efficient for the simultaneous NO and $SO_2$ removal. The $LaCoO_3$ catalyst-loaded filter could remove more than 90% for NO and more than 80% for $SO_2$.

Aerosol Sampling with Two Stage Filter Sampler and Seasonal Variation of Metal Components in the Atmosphere (이단 필터 샘플러에 의한 대기 부유분진의 포집 및 금속 성분의 계절별 거동에 관한 연구)

  • Lee, Yong-Keun;Kim, Nam-Hoon;Myung, No-Seung;Whang, Kyu-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.20-27
    • /
    • 1988
  • A simple two stage aerosol filter sampler which allows simultaneous and fractional collection of two different-size particles, coarse and fine, was constructed and applied to the collection of Seoul atmospheric particulate for inorganic analysis. The sampler consist of two 47-mm diameter filter holder, a pneumatic pump, and a flowmeter. Filtering rate normally runs around 20$\ell$/min for 8 hrs. Using the sampler, a series of seasonal aerosol samples were collected from June 1986 to March 1988 at Yonsei University campus, Seoul and subsequently analysed for ten environmentally important metals using an atomic absorption spectrometer and an inductively coupled plasma emission spectrometer. The analysed metals are Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. The analytical results showed the following order of metal abundance; Al > Fe > Zn > Pb > Mn > Cu > V > Ni > Cr > Cd. Based upon their size distribution pattern, the analyzed matals could be clasified into two groups, those present primarily in coarse particle and those in fine particle. Fe, Al, Mn, V, and Cr belong to the former group while the rest to the latter. Most metal concentration were highest in spring or winter, and lowest in autumn. Statistical analysis showed strong correlations between Al and Fe, Pb and Zn, and Cu and Mn.

  • PDF

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Experimental Study on Reduction Effects of Non-Point Pollutants by Improvement of Infiltration Capacity of Soil Filter Strip (토양여과대의 침투능 향상을 통한 비점오염물질 저감 효과에 관한 실험적 연구)

  • Woo, Su-Hye;Choi, I-Song;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.264-272
    • /
    • 2007
  • Runoff of non-point pollutants has affected bad influence to water quality of river as reaching within short time. For this reason, reducing them prior to reaching aquatic systems or treating them after collection from discharge process of pollutants are desirable for efficient treatment of pollutants. This study was carried out to develop an ecotechnological method to prevent further aggravation of water quality by non-point source through vegetation filter strips. This study has placed a focus on improving infiltration capacity of soil for the optimum condition of vegetation filter strips. Therefore, we used titled soil filter strips instead of vegetation filter strips in this study. The three types of soil tilter strips were used in a bench scale experiment before applying to the field. The reduction efficiency of pollutants in soil filter strips (SS $84.5{\sim}92.5%$, BOD $67.9{\sim}80.6%$, T-N $43.4{\sim}76.6%$, T-P $40.6{\sim}87.4%$, Cu $28.3{\sim}48.1%$ Fe $92.1{\sim}97.7%$, Pb $81.4{\sim}97.3%$) was much higher than that of the controled group. And non-point pollutants reduction efficiency by soil filter strip's forms was estimated to be distinguishing in order of bio material, mixture of sand and gravel and lastly the whole gravel. In the event, the whole reduction efficiency of pollutants on the soil filter strips disclosed good results.

A Study on Selective Catalytic Reduction on Diesel Particulate Filter Catalyst and Coating Technology the Removal of Particulate Matters and NOx for Old Special Cargo Vehicles (노후 특수·화물 차량 PM/NOx 저감을 위한 SDPF 촉매 및 코팅 기술 연구)

  • Jeong, Kwanhyoung;Seo, Philwon;Oh, Hungsuk;Kim, Jongkook;Kang, Soyeon;Kang, Jeongho;Kim, Hyunjun;Shin, Byeongseon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.695-699
    • /
    • 2021
  • In this study, Selective Catalytic Reduction on Diesel Particulate Filter (SDPF) after-treatment system was introduced to simultaneously remove NOx and Particulate Matters (PM) emitted from trucks and special cargo vehicles using old engine. First, in order to select an Selective Catalytic Reduction (SCR) catalyst for SDPF, the de-NOx performance of V/TiO2 and Cu-Zeolite catalysts were compared, and the SCR catalyst characteristics were analyzed through Brunauer Emmett Teller (BET), X-ray Diffraction (XRD) and NH3-TPD (Temperature Programmed Desorption). From the activity test results, the Cu-zeolite catalyst showed the best thermal stability. For optimal coating of SDPF, slurry was prepared according to the target particle size. From the coating stability and back pressure test results of SDPF according to the amount of SCR coating, As a result of comparing coating stability, back pressure, and de-NOx performance by producing A, B, and C samples for each loading amount of the SDPF catalyst, the best results were found in the B sample. The engine dynamometer test was conducted for the optimal SDPF after-treatment system, and the test results satisfied Eu-5 regulations.