• Title/Summary/Keyword: Cu electroless plating

Search Result 126, Processing Time 0.027 seconds

A Study of Copper Electroless Deposition on Tungsten Substrate (텅스텐 기판 위에 구리 무전해 도금에 대한 연구)

  • Kim, Young-Soon;Shin, Jiho;Kim, Hyung-Il;Cho, Joong-Hee;Seo, Hyung-Ki;Kim, Gil-Sung;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.495-502
    • /
    • 2005
  • Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of $CuSO_4$ 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at $60^{\circ}C$. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak ($Cu_2O$ peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of $Cu_2O$ phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.

The Surface Characteristics of Ti/TiN Film Coated Sintered Stainless Steels by EB-PVD Method (EB-PVD법에 의한 Ti/TiN film 코팅된 스테인리스강 소결체의 표면특성)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.195-205
    • /
    • 2001
  • The surface characteristics of Ti/TiN films coated on sintered stainless steels (SSS) by electron beam physical vapour deposition (EB-PVD) were investigated. Stainless steel compacts containing 2, 4, and 10wt%Cu were prepared by the electroless Cu-plating method, which results in increased homogenization in the alloying powder. The specimens were coated with Ti and TiN with a 1.0$\mu\textrm{m}$ thickness respectively by EB-PVD. The microstructures were investigated using scanning electron microscopy (SEM). The corrosion behaviors were investigated using a potentiosat in 0.1 M $H_2$$SO_4$, and 0.1M HCl solutions and the corrosion surface was observed using SEM and XPS. The Ti coated specimens showed rough surface compared to Ti/TiN coated specimens. Ti and Ti/TiN coated SSS revealed a higher corrosion and pitting potential from anodic polarization curves than that of Ti and Ti/TiN uncoated SSS. In addition, Ti/TiN coated SSS containing 10wt% Cu exhibited good resistance to pitting corrosion due to the formation of a dense film on the surface and the decrease in interconnected porosity by electroless coated Cu.

  • PDF

Effect of Additional Electrical Current on Adhesion Strength between Copper and Polyimide Films (인가 전류가 구리 도금 피막과 폴리이미드 필름의 접합력에 미치는 영향)

  • Lee, Jang-Hun;Han, Yoonsung;Lee, Ho-Nyun;Hur, Jin-Young;Lee, Hong Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • The effect of the additionally applied electrical current on the adhesion strength between electroless Cu and polyimide films was investigated. Peel tests were performed after applying electrical current within the range from 0.1 to 100 mA for the duration from 1 to 30 minutes. Sample with more than 1 mA of additional electrical current for 1 minute showed higher adhesion strength than that without additional electrical current. However, samples with 10 mA of additional electrical current for more than 10 miniutes showed the degradation of adhesion strength. Ra and RMS values of the peeled polyimide surface were proportional to the adhesion strength though there were no significant changes in the morphology of the peeled surfaces with varied amount and time-length of additional electrical current. Applying electrical current could increase the density of chemical bonding, which results in increase of the adhesion strength between copper and polyimide. However, in the case of applying additional electrical current for excessive amount or time, the degradation of the adhesion strength owing to the formation of copper oxide at the interface could occur.

Ni/Cu Metallization for High Efficiency Silicon Solar Cells (Ni/Cu 전극을 적용한 고효율 실리콘 태양전지의 제작 및 특성 평가)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1352-1355
    • /
    • 2004
  • We have applied front contact metallization of plated nickel and copper for high efficiency passivated emitter rear contact(PERC) solar cell. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. The plating technique is a preferred method for commercial solar cell fabrication because it is a room temperature process with high growth rates and good morphology. In this system, the electroless plated Ni is utilized as the contact to silicon and the plated Cu serves as the primary conductor layer instead of traditional solution that are based on Ti/Pd/Ag contact system. Experimental results are shown for over 20 % PERC cells with the Plated Ni/Cu contact system for good performance at low cost.

무전해 도금방식을 이용한 PET 필름 위 선택적 Ni-Cu 박막의 특성분석

  • Kim, Na-Yeong;Baek, Seung-Deok;Lee, Yeon-Seung;Kim, Hyeong-Cheol;Na, Sa-Gyun;Choe, Seong-Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.387.2-387.2
    • /
    • 2014
  • 최근 이동통신 LED 에너지 자동차 산업분야에서 제품의 고기능화 고성능화를 위한 신소재 개발 및 친환경적인 신공정 개발에 있어, PI 또는 PET와 같은 유연성 소재 위에 선택적 패턴 도금 기술, 고기능성 나노/복합 도금 등이 주목 받고 있다. 또한 전 세계적으로 유해물질의 수 출입 규제 움직임이 강력하게 제기되고 있다. 본 연구에서는 유연성 소재인 PET 위에 친환경적 방법으로 구리를 선택적으로 도금하기 위한 실험을 진행하였다. 준비된 PET 필름 위에 Ag paste를 Screen Printing법을 이용하여 Ag 전극을 패턴하고, 그 위에 무전해 도금방식을 이용하여 Ni과 Cu가 도금 되도록 하였다. Ni 무전해 도금은 pH6.5, 65도에서 시행되었으며, Cu 무전해 도금은 환경규제물질인 포름알데히드 대신에 차아인산나트륨을 사용하여 70도에서, 중성근처의 pH 농도(pH7과 pH8)에서 시행되었다. 이들 다층 박막에 대해 X-ray diffraction (XRD), SEM (Scanning Electron Microscope), XPS (X-ray Photoelectron Spectroscopy) 등을 이용하여 물리-화학적/전기적 특성들을 이용하여 조사 분석하였다.

  • PDF

Electroless Plating of Cu and its Characteristics with Plating Parameters and Reducing Agent (도금 변수 및 환원제에 따른 Cu 무전해 도금 및 도금막 특성 평가)

  • Lee, Jeong-Hyeon;Lee, Sun-Jae;Jeong, Do-Hyeon;Jeon, Ju-Seon;Jeong, Jae-Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.174.1-174.1
    • /
    • 2016
  • 무전해 도금법은 외부 전원을 인가하지 않고 환원제를 이용하여 자발적으로 금속 도금층을 형성시키는 기술로, 용액내의 환원제가 산화될 때 방출되는 전자가 금속 이온에 전이하여 금속을 코팅하는 기술이다. 그 중에서도 Cu 무전해도금은 박막 형성의 용이성 및 간단한 제조 공정으로 인한 제조 원가 절감 등의 장점으로 인해 반도체 소자 배선부분에서 건식방식으로 발생되는 한계점들에 대한 해결 기술로 주목받고 있다. 또한, 이 기술은 금속 이온이 환원제에 의해 금속으로 석출되기 때문에, 피도금물이 무전해 도금액과 균일하게 접촉하고 있으면 균일한 도금 두께를 얻을 수 있는 장점이 있어서 복잡하고 다양한 형상의 제품에 적용이 가능하다. 본 연구에서는 플라스틱, PCB 등 다양한 기판에 도금 환원제, 온도 및 시간 등 도금변수를 변경하여 Cu 도금막을 형성한 후 그 특성을 평가하였다. 도금층 두께 분석을 위해 field emission scanning electron microscope (FE-SEM), energy-dispersive spectroscopy (EDS)를 사용하였으며, 박리성 평가를 위해 cross-cutting test를 실시하였다. 실험 결과, 두께 $1{\sim}3{\mu}m$ 급의 균일한 도금층이 형성된 것을 확인하였으며, $85^{\circ}C/85%$ 고온고습 조건에서 168시간 후 박리성 평가 결과, 결함 없는 양호한 표면을 나타내었다.

  • PDF

Investigation of Ni Silicide formation for Ni/Cu contact formation crystalline silicon solar cells (Ni/Cu 금속 전극이 적용된 결정질 실리콘 태양전지의 Ni silicide 형성의 관한 연구)

  • Lee, Ji-Hun;Cho, Kyeong-Yeon;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.434-435
    • /
    • 2009
  • The crystalline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more. high-efficiency and low cost endeavors many crystalline silicon solar cells. the fabrication processes of high-efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/Ag contact, however, this contact formation processed by expensive materials. Ni/Cu contact formation is good alternative. in this paper, according to temperature Ni silicide makes, produced Ni/Cu contact solar cell and measured conversion efficiency.

  • PDF

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Fabrication of Copper(II) Oxide Plated Carbon Sponge for Free-standing Resistive Type Gas Sensor and Its Application to Nitric Oxide Detection (프리스탠딩 저항형 가스 센서용 산화구리 무전해 도금 탄소스펀지 제조 및 일산화질소 감지)

  • Kim, Seokjin;Ha, Seongmin;Myeong, Seongjae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.630-635
    • /
    • 2022
  • Copper(II) oxide (CuO), electroless plated on a nitrogen-containing carbon sponge prepared by a melamine sponge thermal treatment, was developed as a nitric oxide (NO) gas sensor that operates without a wafer. The CuO content on the surface of the carbon sponge increased as the plating time increased, but the content of nitrogen known to induce NO gas adsorption decreased. The untreated carbon sponge showed a maximum resistance change (5.0%) at 18 min. On the other hand, the CuO plated sample (CuO30s-CS) showed a maximum resistance change of 18.3% in 8 min. It is considered that the improvement of the NO gas sensing capability was caused by the increase in hole carriers of the carbon sponge and improved movement of electrons due to CuO. However, the NO gas detection resistance of the CuO electroless plated carbon sponge for 60 s decreased to 1.9%. It is considered that the surface of the carbon sponge was completely plated with CuO, resulting in a decrease in the NO gas adsorption capacity and resistance change. Thus, CuO-plated carbon sponge can be used as an effective NO gas sensor because it has fast and excellent resistance change properties, but CuO should not be completely plated on the surface of the carbon sponge.

A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump (무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구)

  • ;;Sabine Nieland;Adreas Ostmann;Herbert Reich
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF