• Title/Summary/Keyword: Cu electrode

Search Result 493, Processing Time 0.027 seconds

Ruthenium Thin Films Grown by Atomic Layer Deposition

  • Shin, Woong-Chul;Choi, Kyu-Jeong;Jung, Hyun-June;Yoon, Soon-Gil;Kim, Soo-Hyun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.12-12
    • /
    • 2008
  • Ruthenium is one of the noble metals having good thermal and chemical stability, low resistivity, and relatively high work function(4.71eV). Because of these good physical, chemical, and electrical properties, Ru thin films have been extensively studied for various applications in semiconductor devices such as gate electrode for FET, capacitor electrodes for dynamic random access memories(DRAMs) with high-k dielectrics such as $Ta_2O_5$ and (Ba,Sr)$TiO_3$, and capacitor electrode for ferroelectric random access memories(FRAMs) with Pb(Zr,Ti)$O_3$. Additionally, Ru thin films have been studied for copper(Cu) seed layers for Cu electrochemical plating(ECP) in metallization process because of its good adhesion to and immiscibility with Cu. We investigated Ru thin films by thermal ALD with various deposition parameters such as deposition temperature, oxygen flow rate, and source pulse time. Ru thin films were grown by ALD(Lucida D100, NCD Co.) using RuDi as precursor and $O_2$ gas as a reactant at 200~$350^{\circ}C$.

  • PDF

Fabrication of Ti/Ir-Ru electrode by spin coating method for electrochemical removal of copper

  • Kim, Joohyun;Bae, Sungjun
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.646-653
    • /
    • 2019
  • Recovery of valuable metals in the industrial wastewater and sludge has attracted an attention owing to limited metallic resources in the earth. In this study, we firstly fabricated Ti/Ir-Ru electrodes by spin coating technique for effective recovery of Cu in electrowinning process. Two different Ti/Ir-Ru electrodes were fabricated using 100 and 500 mM of precursors (i.e., Ir-Ru). SEM-EDX and AFM revealed that Ir and Ru were homogenously distributed on the surface of Ti plate by the spin coating, in particular the electrode prepared by 500 mM showed distinct boundary line between Ir-Ru layer and Ti substrate. XRD, XPS, and cyclic voltammetry also revealed that characteristics of IrO2, RuO2, and TiO2 and its electrocatalytic property increased as the concentration of coating precursor increased. Finally, we carried out Cu recovery experiments using two Ti/Ir-Ru as anodes in electrowinning process, showing that both anodes showed a complete removal of Cu (1 and 10 g/L) within 6 h reaction, but much higher kinetic rate constant was obtained by the anode prepared by 500 mM. The findings in this study can provide a fundamental knowledge for surface characteristics of Ti/Ir-Ru electrode prepared by spin coating method and its potential feasibility for effective electrowinning process.

Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power

  • JEON SUNG JIN;SHIN IN HO;SANG BYUNG IN;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.281-286
    • /
    • 2005
  • We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH$_2$ oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH$_2$ Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.

RDE를 이용한 구리이온의 환원속도 및 전착형태에 관한 고찰 (A Study on the Kinetics of Copper Ions Reduction and Deposition Morphology with the Rotating Disk Electrode)

  • 남상철;엄성현;이충영;탁용석;남종우
    • 공업화학
    • /
    • 제8권4호
    • /
    • pp.645-652
    • /
    • 1997
  • 백금 회전전극을 이용하여 확산지배영역에서의 구리 착화합물의 환원에 대한 전기화학적 특성조사 및 이에 대한 속도인자들을 구하였다. 황산염 용액내에서 Cu(II)의 환원은 2전자, 1단계 반응이며, 염화물 용액내에서의 Cu(II)는 1전자, 2단계 반응으로 환원된다. 환원반응에서의 전달계수는 황산염 용액내에서 Cu(II)가 가장 작으며, 할로겐염 중에서 Cu(I)의 전달계수는 1에 가까운 값을 나타내었다. 염화물 용액안에서 구리이온의 환원에 대한 표준속도상수는 Cu(II)의 환원이 Cu(I)을 출발물질로 할 경우보다 100배 정도 빠른 값을 나타내었다. 그리고 확산계수는 $Cl^-$존재시의 Cu(II), $I^-$, $Br^-$, $Cl^-$존재시의 Cu(I) 및 $SO_4^{-2}$존재시의 Cu(II)의 순으로 증가하였으며, 각 용액 내에서의 구리이온의 반지름 및 확산에 대한 활성화 에너지도 위의 순서와 동일하게 감소하였다. 회전전극상의 구리전착의 경우 전착전위 및 농도에 따라 불균일한 전착표면을 형성하였으며, 이러한 전착표면의 불균일성은 UV/VIS로 분석이 가능하였다.

  • PDF

Crystallization of Amorphous Silicon Films by Field-Aided Lateral Crystallization (FALC) technique at $350^{\circ}C$

  • Park, Kyoung-Wan;Cho, Ki-Taek;Choi, Duck-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.548-551
    • /
    • 2002
  • The crystallization of amorphous silicon (a-Si) was achieved using a field aided lateral crystallization (FALC) process at 350 $^{\circ}C$. Under the influence of an electric field, Cu is found to drastically enhance the lateral crystallization velocity of a-Si. When an electric field was applied to the selectively Cu-deposited a-Si film during the heat treatment at temperature as low as 350 $^{\circ}C$, dendrite-shaped crystallization of a-Si progressed toward Cu-free region and the crystallization from negative electrode side toward positive electrode side was accelerated. We identified that 1000${\AA}$ thick a-Si film was completely crystallized by Cu-FALC process at 350 $^{\circ}C$ by TEM analysis.

  • PDF

ENHANCEMENT OF PHOTOVOLTAIC PERFORMANCE IN COPPER PHTHALOCYNINE THICK FILM SOLAR CELLS

  • Ruiono, Yo Tomota;Momose, Yoshihiro;Takeuchi, Manabu
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.673-677
    • /
    • 1996
  • Copper phthalocyanine(CuPc) thick film solar cells were fabgricated byspin coating and their photovoltaic behavior was studied. Polyvinylidene fluoride (PVdF) was used for the binder. Aluminum and indium were employed as electrode metals to form Schottky contact to CuPc layer. The cells showed rectifying J-V characteristics in the dark and photovoltaic effect associated with white light irradiation. The photovoltaic performance of the cells strongly depended on contact metals, in which the formation of oxide layer between binder layer and electrode interface affected the solar cell. Influnce of the CuPc layer thickness, CuPc/PVdF ratio on the photovoltaic performance of the cells were also examined.

  • PDF

나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가 (Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties)

  • 박수진;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구 (A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • 제24권1호
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향 (The Coating Materials of Electrode Materials on Machinability of W-EDM)

  • 김창호;허관도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF