• 제목/요약/키워드: Cu composites

검색결과 227건 처리시간 0.022초

Evaluation of Carbon Fiber distribution in Unidirectional CF/Al Composites by Two-Dimensional Spatial Distribution Method

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Lee, Sangpill;Sugio, Kenjiro;Sasaki, Gen
    • 한국산업융합학회 논문집
    • /
    • 제21권1호
    • /
    • pp.29-36
    • /
    • 2018
  • Low pressure casting process for unidirectional carbon fiber reinforced aluminum (UD-CF/Al) composites which is an infiltration route of molten Al into porous UD-CF preform has been a cost-effective way to obtain metal matrix composites (MMCs) but, easy to cause non-uniform fiber distribution as CF clustering. Such clustered CFs have been a problem to decrease the density and thermal conductivity (TC) of composites, due to the existence of pores in the clustered area. To obtain high thermal performance composites for heat-sink application, the relationship between fiber distribution and porosity has to be clearly investigated. In this study, the CF distribution was evaluated with quantification approach by using two-dimensional spatial distribution method as local number 2-dimension (LN2D) analysis. Note that the CFs distribution in composites sensitively changed by sizes of Cu bridging particles between the CFs added in the UD-CF preform fabrication stage, and influenced on only $LN2D_{var}$ values.

분자수준 혼합공정을 이용한 탄소나노튜브/Cu 나노복합재료의 제조 및 특성평가 (Fabrication and Characterization of Carbon Nanotube/Cu Nanocomposites by Molecular Level Mixing Process)

  • 김경태;차승일;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2005
  • Since the first discovery of carbon nanotube (CNT) in 1991, a window to new technological areas has been opened. One of the emerging applications of CNTs is the reinforcement of composite materials to overcome the performance limits of conventional materials. However, because of the difficulties in distributing CNTs homogeneously in metal or ceramic matrix by means of traditional composite processes, it has been doubted whether CNTs can really reinforce metals or ceramics. In this study, CNT reinforced Cu matrix nanocomposite is fabricated by a novel fabrication process named molecular level mixing process. This process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows to be 3 times higher strength and 2 times higher Young’s modulus than Cu matrix. This extra-ordinary strengthening effect of carbon nanotubes in metal is higher than that of any other reinforcement ever used for metal matrix composites.

  • PDF

유성볼밀링 및 스파크 플라즈마 소결법으로 제조한 Mo-5~20 wt%. Cu 합금의 열적 특성 (Thermal Property of Mo-5~20 wt%. Cu Alloys Synthesized by Planetary Ball Milling and Spark Plasma Sintering Method)

  • 이한찬;문경일;신백균
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.516-521
    • /
    • 2016
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile, and many other applications due to their excellent physical and electric properties. Especially, Mo-Cu composites with 5 ~ 20 wt.% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength, and prominent electrical and thermal conductivity. In most of the applications, highly-dense Mo-Cu materials with homogeneous microstructure are required for better performance. In this study, Mo-Cu alloys were prepared by PBM (planetary ball milling) and SPS (spark plasma sintering). The effect of Cu with contents of 5~20 wt.% on the microstructure and thermal properties of Mo-Cu alloys was investigated.

Ti-Al-Si-Cu-N 후막의 Cu 조성에 따른 기계적 특성과 미세구조 변화에 관한 연구 (Influence of Cu Composition on the Mechanical Properties and Microstructure of Ti-Al-Si-Cu-N thick films)

  • 이연학;허성보;박인욱;김대일
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.335-340
    • /
    • 2023
  • Quinary component of 3㎛ thick Ti-Al-Si-Cu-N films were deposited onto WC-Co and Si wafer substrates by using an arc ion plating(AIP) system. In this study, the influence of copper(Cu) contents on the mechanical properties and microstructure of the films were investigated. The hardness of the films with 3.1 at.% Cu addition exhibited the hardness value of above 42 GPa due to the microstructural change as well as the solid-solution hardening. The instrumental analyses revealed that the deposited film with Cu content of 3.1 at.% was a nano-composites with nano-sized crystallites (5-7 nm in dia.) and a thin layer of amorphous Si3N4 phase.

반응소결법으로 제조한 Iron Aluminide-Cu 및 Ni-P 피복 $SiC_p$ 예비성형체의 특성평가 (Characteristic Evaluation of Iron Aluminide-Cu and Ni-P Coated $SiC_p$ Preform Fabricated by Reactive Sintering Process)

  • 차재상;김성준;최답천
    • 한국주조공학회지
    • /
    • 제22권1호
    • /
    • pp.42-48
    • /
    • 2002
  • Effects of coating treatment of metallic Cu, Ni-P film on $SiC_p$, for $SiC_p$/iron aluminide composites were studied. Porous hybrid preforms were fabricated by reactive sintering after mixing the coated $SiC_p$, Fe and Al powders. Then the final composites were manufactured by squeeze casting after pouring AC4C Al alloy melts in preforms. The change of reactive temperature, density, microstructure of the preforms and microstructure of the composites were investigated. The exprimental results were summarized as follows. The thickness of Cu and Ni-P metallic layer formed on $SiC_p$ by electroless plating method were about $0.5{\mu}m$ and coated uniformly. There was no remakable change in the ignition temperature with variation of the mixing ratio of Fe and Al powder while in the case of coated $SiC_p$ it was lower about $20^{\circ}C$ than in the non-coated $SiC_p$. The maximum reaction temperature increased with increasing Al contents, but decreased with increasing $SiC_p$ contents. Expansion ratio of preform after reactive sintering increased with amount of Cu coated $SiC_p$. In the case of Fe-70at.%Al, the expansion ratio was about 7% up to 8wt.% of $SiC_p$, addition but further addition of $SiC_p$, increased the ratio significantly. And in the case of Fe-50 and 60at.%Al, it was about 20% up to 16wt.% of $SiC_p$ addition and about 28% in 24wt.% of $SiC_p$, addition. The microstructures of compounds showed that the grains became finer as amount of $SiC_p$, and mixing ratio of iron powder increased and the shape of compounds was changed gradually from irregular to spheroidal.

음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가 (Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis)

  • 이원오;이상복;최오영;이진우;변준형
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

알루미나 단섬유 및 입자강화 알루미늄 청동기지 복합재의 마모특성 (On the Wear Properties of the Alumina Short Fiber and Particle Reinforced Aluminium Bronze Alloy Composite)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • 제10권3호
    • /
    • pp.39-46
    • /
    • 1994
  • In order to investigate the effect of the ceramic reinforcements on the wear properties of aluminum bronze composites, Cu-8wt%Al aluminum bronze alloys reinforced with the Saffil alumina short fiber were produced by the powder metallurgical method and tested by a pin-ondisc wear testing machine. The wear surfaces of the pin specimens and discs, wear debris, and the cross sections of the wear specimens were observed by SEM. The wear mechanism according to various wear conditions and the change of microstructure in the composites were also discussed. In the results, the reinforcement of the composites with alumina short fiber was very effective at the higher applied load over 10N. The material transportation to the counter disc was observed in the alloy specimens without reinforcements. However, the composites reinforced with ceramic particles and fibers showed the resistance against the material transportation.

기계적 밀링 공정을 이용한 준결정 강화 알루미늄 복합재료의 제조 (Fabrication of Quasi-crystal Strengthened Aluminum Composites by Mechanical Milling Process)

  • 장우길;신광선
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.208-213
    • /
    • 2005
  • Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral $Al_{65}Cu_{20}Fe_{15}$ phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.